100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
APLICACIONES DE LAS INTEGRALES $3.23   Add to cart

Class notes

APLICACIONES DE LAS INTEGRALES

 0 view  0 purchase
  • Course
  • Institution

RESUMEN DE : APLICACIONES DE LAS INTEGRALES

Preview 1 out of 3  pages

  • October 6, 2021
  • 3
  • 2019/2020
  • Class notes
  • Manuel ordóñez cabrera
  • All classes
avatar-seller
TEMA 11: APLICACIONES DE LAS INTEGRALES Si se trata del área del recinto
delimitado por dos curvas
1. ÁREA DE FIGURAS PLANAS
𝐶 ≔ {(𝑥, 𝑦) ∈ ℝ2 : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) ≤ 𝑦 ≤ 𝑔(𝑥)}
DEFINICIÓN
el área será:
Sea 𝑓: [𝑎, 𝑏] → ℝ continua y ≥ 0 ∀𝑥 ∈ [𝑎, 𝑏]. El área del recinto
𝒃
𝐶 ≔ {(𝑥, 𝑦) ∈ ℝ2 : 𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑓(𝑥)} 𝑓 (𝑥 ) Á𝒓𝒆𝒂(𝑪) = ∫ [𝒈(𝒙) − 𝒇(𝒙)] 𝒅𝒙
𝒂
viene dada por la integral:

𝑏
Á𝑟𝑒𝑎(𝐶) = ∫ 𝑓(𝑥) 𝑑𝑥
𝑎 En general, si las gráficas de ambas
funciones se cortan entre si varias veces,
el área del recinto C limitado por las
verticales 𝑥 = 𝑎, 𝑥 = 𝑏 y las curvas
Esta definición se puede extender a otros recintos planos. verticales 𝑓(𝑥) y 𝑔(𝑥) será:
DEFINICIÓN 𝒃
Á𝒓𝒆𝒂(𝑪) = ∫ |𝒇(𝒙) − 𝒈(𝒙)| 𝒅𝒙
Si la función fuese negativa, el área del recinto 𝒂

𝐶 ≔ {(𝑥, 𝑦) ∈ ℝ2 : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) ≤ 𝑦 ≤ 0}
NOTA. Es fácil escribir las fórmulas análogas para áreas de regiones del tipo
sería:
{(𝑥, 𝑦) ∈ ℝ2 : 𝑐 ≤ 𝑦 ≤ 𝑑, 𝑔(𝑦) ≤ 𝑥 ≤ 𝑓(𝑦)}
𝑏
Á𝑟𝑒𝑎(𝐶) = − ∫ 𝑓(𝑥) 𝑑𝑥
𝑎
2. LONGITUD DE ARCOS DE CURVA
𝑓 (𝑥 ) DEFINICIÓN
Se define la longitud del arco de curva 𝑦 = 𝑓(𝑥) entre los puntos 𝐴(𝑎, 𝑓(𝑎)) y
𝐵(𝑏, 𝑓(𝑏)) como
En general, si la función no tiene signo 𝑏
2
constante, el área del recinto C sería la 𝑙 = ∫ √1 + (𝑓 ′(𝑥)) 𝑑𝑥
𝑎
suma de las áreas parciales de los recintos
donde se conserva el signo, 𝑓 (𝑥 )
o equivalentemente,

𝒃
Á𝒓𝒆𝒂(𝑪) = ∫ |𝒇(𝒙)| 𝒅𝒙
𝒂

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller alistats. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

60904 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.23
  • (0)
  Add to cart