100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
MOORE, McCABE, CRAIG Samenvatting Hoofdstuk 8 Inference for proportions $3.18
Add to cart

Summary

MOORE, McCABE, CRAIG Samenvatting Hoofdstuk 8 Inference for proportions

 15 views  0 purchase
  • Course
  • Institution
  • Book

Deze samenvatting van H8: Inference for proportions is aan de hand van het hoorcollege en het boek 'Introduction to the practice of statistics (eighth edition)' van Moore, McCabe en CRAIG gemaakt. Er worden verhelderende voorbeelden gegeven en dia's die zijn behandeld in het blok. Door deze stati...

[Show more]

Preview 2 out of 12  pages

  • No
  • Hoofdstuk 8
  • October 11, 2021
  • 12
  • 2020/2021
  • Summary
avatar-seller
Hoorcollege 2 (8-10-2020)

Hoofdstuk 8 – Inference for proportions
Toetsen: idee toetsen in nulhypothese. Je kiest de verdeling die de nulhypothese aangeeft (waarden
verassend of niet). Er zijn range waarden die aannemelijk zijn. Je trekt een grens, waarden die
daarbuiten liggen zijn onaannemelijk. Onaannemelijk is verwerpen de nulhypothese.

Statistische schatting

Gemiddelden
Verschillen in gemiddelden
Twee groepen met dezelfde gemiddelden in de populatie, niet dezelfde gemiddelden in de
steekproef die je trekt want je hebt te maken met steekproefvariantie. (Steekproeven zijn zelden
gelijk aan elkaar) → Er zal vaker een klein verschil zijn in steekproefgemiddelden of extreme
gevonden waarden.

H0 = er is GEEN verschil (beide groepen zijn gelijk. OF het gemiddelde is gelijk aan 0.
→ Hoe verder van de nulhypothese (0) hoe groter het verschil.

Verdeling van type scores

1. Teken de normale verdeling zoals de Nulhypothese zou kloppen (gemiddelde 0 , geen
verschil).
a. Individuele steekproef scores
Sluit de data aan bij de Nulhypothese is het niet verassend en niet onaannemelijk en klopt de
hypothese → Niet verwerpen.
Sluit de data niet aan bij de Nulhypothese is het verassend en groter verschil met vaker
uitvoeren → Nulhypothese verwerpen.
b. De populatie scores
Wat we vinden sluit aan bij de paramater van de verdeling van de populatie. Je wilt iets
zeggen over de populatie op basis van de steekproef.
Je kijkt NIET naar de individuele scores van de steekproef.
c. Iets anders

Kiezen van referentieverdeling (= verdeling paramater waarin we geïnteresseerd zijn onder de
nulhypothese).
Voorbeeld: Het verschil in gemiddelde → steekproef groep 1 en 2 en verschil berekenen. Dit doe je
steeds meer en hier maak je frequentieberekening van. Kost te veel tijd.

Dit doe je met Centrummaat of maat van spreiding

- Centrummaat
Het gemiddelde van de verdeling (het gemiddelde is de waarde
van de Nulhypothese)
- Maat van spreiding
Hoeveel variantie zit er in de populatie op basis van 1
steekproef? Dit kan om te bepalen hoe de verdeling eruit komt
te zien.



1

, De breedte van de steekproevenverdeling is gelijk aan de standaarddeviatie : de wortel van
je steekproefomvang.
Formule >


Standaarderror (breedte) SD populatie : wortel van de steekproeven.

Stappen die je zet

1)Nulhypothese

2)Nulhypothese omzetten in de referentieverdeling (welke waarden zijn aannemelijk en welke niet)

3)Je kiest een grenswaarde (als het extremer wordt dan … in de Nulhypothese ga ik hierbij de
Nulhypothese verwerpen). Te onaannemelijk.

Grenswaarden: 5% of minder (reden om H0 te verwerpen). Welke z-waarde hoort bij
2,5%/2,5% met het gemiddelde en de standaarddeviatie kan omgezet worden in de verassende
score. Om de H0 te verwerpen of niet.

Z-waarde formule > z = X – u : SD

--

Welke range aan waardes voor verschil in gemiddelde in populaties zijn aannemelijk?

Stappen die je zet

1)Nulhypothese

2) Nulhypothese omzetten in referentieverdeling

3) GEEN grenswaarden (kans 5% of minder).
Bepalen welke range aan waarden aannemelijk is voor steekproevenverdeling. Wat is aannemelijk.
Welke waarden vallen in het midden van steekproeven verdeling.

Betrouwbaarheidsinterval: op basis van verdeling 95% van de waarden binnen 2SD van de
verdeling valt. Maatstaaf.
→ Welke waarden liggen +2SD en -2SD van het gemiddelde.

Voorbeeld: gem 0 en SD 5. Betrouwbaarheidsinterval -10 tot +10. Volgens steekproevenverdeling zijn
de waarden te verwachten tussen -10 en +10 in de populatie.

Hoe smaller betrouwbaarheidsinterval, hoe smaller jou range van mogelijke waarden en hoe dichter
jou steekproefwaarden bij je populatiewaarden zit (range van waarden).

Betrouwbaarheisinterval: als we veel steekproeven trekken, hieruit gemiddelde en
betrouwbaarheidsinterval berekenen, 95% per keer (2SD), dan zullen 95% de echte
populatiewaarden bevatten als je het meerdere keren doet, gelijk hebben.
Foutieve gedachte: bij een betrouwbaarheidsinterval van 95% weet ik dus NIET 95% zeker dat het
populatiegemiddelde in het betrouwbaarheid gemiddelde ligt.

Formule > Schatting +_ margin or error
M = Z* SD / wortel n

Z* = kritieke waarde

2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller anoukopschoor99. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.18. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

48072 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$3.18
  • (0)
Add to cart
Added