100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Statistiek I semester 2. $5.88
Add to cart

Summary

Samenvatting Statistiek I semester 2.

 34 views  5 purchases
  • Course
  • Institution
  • Book

Samenvatting van SEM 2, SEM 1 is apart te koop...

Preview 4 out of 49  pages

  • Yes
  • November 9, 2021
  • 49
  • 2020/2021
  • Summary
avatar-seller
EZElOMoARcPSD|3543291




Statistiek theorie 2de semester

Introductie..................................................................................................................................
4.0 Kansrekening: Studie van toeval (Randomness)....................................................................
01 Kans en inferentie..............................................................................................................
02 Verzamelingen en combinatieleer.....................................................................................
03 Unie en doorsnede.............................................................................................................
04 Speciale situatie.................................................................................................................
05 Verschil..............................................................................................................................
06 Complement van een deelverzameling..............................................................................
07 Partitie...............................................................................................................................
08 Permutaties # mogelijke volgorden van elementen in een verzameling............................
09 Combinaties bij # deelverzamelingen................................................................................
10 Variaties.............................................................................................................................
11 Samenvatting tabel............................................................................................................
4.1. Toeval (randomness)............................................................................................................
4.2. Kansmodellen.......................................................................................................................
4.2.1 Uitkomstenruimten (sample spaces).............................................................................
4.2.2 Eenvoudige kansen......................................................................................................
4.3. Stochastische variabelen (toevalsvariabelen)....................................................................
4.3.1 Discrete stochastische variabelen................................................................................
4.3.2 Continue stochastische variabelen...............................................................................
4.3.3 Normaalverdelingen als kansverdelingen....................................................................
4.4. Verwachting en variantie van stochastische variabelen.....................................................
4.4.1 Verwachting van een stochastische variabele..............................................................
4.4.2 Statistische schatting en de wet van de grote getallen................................................
4.4.3 Regels voor verwachtingen..........................................................................................
4.4.4 Variantie van een stochastische variabele...................................................................
4.4.5 Regels voor varianties.................................................................................................
4.5. Wetten van de kansrekening..............................................................................................
4.5.1 Algemene optelregels..................................................................................................
4.5.2 Basisregels voor kansen...............................................................................................
4.5.3 Somregel voor 3 gebeurtenissen.................................................................................
4.5.4 Productregel voor 2 gebeurtenissen............................................................................
4.5.5 Stochastische onafhankelijkheid..................................................................................
4.5.6 Overzicht......................................................................................................................
4.5.7 Kansbomen..................................................................................................................
4.5.8 Regel van Bayes...........................................................................................................
5. Steekproevenverdeling (sampling distribution)....................................................................
5.0.1 Parameters en karakteristieke waarden......................................................................

, lOMoARcPSD|3543291




5.0.2 Steekproevenverdeling................................................................................................
5.1 Steekproevenverdeling voor aantallen en proporties.........................................................
5.1.1 Binomiale verdelingen van steekproefaantallen..........................................................
5.1.2 Binomiale verdelingen in steekproeven.......................................................................
5.1.3 Binomiale kansen bepalen...........................................................................................
5.1.4 Verwachting en standaarddeviatie van een binomiale verdeling................................
5.1.5 Steekproeffracties........................................................................................................
5.1.6 Benadering van aantallen en fracties met normaalverdeling.......................................
5.1.7 Continuïteitscorrectie..................................................................................................
5.2 Steekproevenverdeling van het steekproefgemiddelde......................................................
5.2.1 Verwachting en standaarddeviatie van steekproefgemiddelden.................................
5.2.2 Steekproevenverdeling van een steekproefgemiddelde..............................................
5.2.3 Centrale Limiet Stelling................................................................................................
6. Inleiding tot inferentie..........................................................................................................
6.1 Betrouwbaar schatten.....................................................................................................
6.2 Significantietoetsen........................................................................................................
6.3 Overschrijdingskansen (p-waarden) vs vast significantieniveau α..................................
Bijlage........................................................................................................................................

, lOMoARcPSD|3543291




Introductie
Wat is inductieve of inferentiële statistiek Inductieve
of Inferentiële statistiek:
Verklarende statistiek, vergelijkt onderzoeksgegevens met wat mogelijk is door TOEVAL, gebaseerd op
kansrekening. Op basis van een beperkt aantal gegevens wordt getracht om algemene uitspraken te
formuleren over de gehele populatie.
Bij inductieve technieken gaan we het hebben over schatten en toetsen. Schatten zou zijn “als dit, dan
wat verwachten?”.

We zijn geïnteresseerd in de populatie, maar we beseffen dat het niet mogelijk is om een hele
populatie te onderzoeken. Onze populatie is steeds in verandering vb: er zijn op dit moment mensen
geboren en gestorven.

Steekproef geeft info over populatie
Een steekproef is een deel dat we gaan trekken uit de populatie. Op die steekproef gaan we onze
beschrijvende statistiek toepassen. Vb: in die steekproef is de gemiddelde score… of is de
leeftijdsverdeling… of zit zoveel percent mannen enz..
Dus wij gaan heel specifieke uitspraken kunnen doen over de steekproef, maar we gaan ons afvragen
wat vertelt dat ons eigenlijk over onze populatie

Als ik weet dat in de steekproef de gem leeftijd 25,3 jaar is, moet ik dan verwachten dat in de populatie
hetzelfde gaat geven? Waarschijnlijk niet. Als een andere persoon dat doet, vind hij/zij misschien 26,5
jaar. Iedereen die steekproeven kan trekken, kan fundamenteel verschillende beschrijvende
statistieken gaan vinden.
Steekproef gaat geen exact cijfer geven, maar toch grenzen gaat bepalen. Vb: gem leeftijd in populatie
zal dichtbij 25 jaar zijn

4.0 Kansrekening: Studie van toeval (Randomness)
01 Kans en inferentie
Onderzoek: kan een rat zien of iemand jong/oud en man/vrouw is? Er zijn 4 deurtjes: één met een jong
meisje, één met een volwassen man, één met een jonge jongen en één met een volwassen vrouw.
Achter één van de 4 deuren zit er voedsel. De rat heeft 20 pogingen, dus telkens 1 kans op 4 op
correcte keuze. We verwachten gemiddeld 5 correcte keuzen. Zijn de volgende resultaten dus
mogelijk/waarschijnlijk?
• 7/20 : toeval
• 15/20 : kan je niet verklaren op toeval want de kans is zeer klein dat de rat 15x correct is
= kan het
• (<) 4/20 : kan het niet
➔ Als die rat niet in staat is om de foto’s te herkennen, verwachten wij dat hij 5x juist is

, lOMoARcPSD|3543291




02 Verzamelingen en combinatieleer
Een verzameling = een groepering waarin een aantal elementen (n) zitten
Notatie: A={a1, a2, …, an}
We gebruiken daarvoor meestal een venn-diagram:




Verzameling B is een deelverzameling van verzameling A die elementen a3, en an bevat.
Deelverzameling betekent dat het in A moet zitten.




 Een deelverzameling = een kleinere verzameling van elementen binnen de
oorspronkelijke verzameling
 In woorden: B is een deelverzameling van A
 Als het teken omgekeerd stond dan zouden we zeggen: de verzameling B bevat
een deelverzameling A


03 Unie en doorsnede




We kunnen verzamelingen samennemen, dat noemen we de unie. De doorsnede is de overlapping
tussen de 2.
Opgelet bij unie: de unie van A of B ≠ aan de soms van de verzamelingen A en B. Dit
omdat A en B ook overlappen.

 De OF bij unie wijst op het feit dat het A of B of beide is.
 De unie komt overeen met plus
 Bij de doorsnede behoren alle elementen die zowel tot A als tot B behoren.

 De doorsnede komt overeen met maal




2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller eliaselmorabiti. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.88. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

53068 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.88  5x  sold
  • (0)
Add to cart
Added