Class notes and Summary of materials Data Science Research Methods (JBM)
10 keer bekeken 0 keer verkocht
Vak
Data Science Research Methods (JBM020)
Instelling
Technische Universiteit Eindhoven (TUE)
Boek
Experimental Design
This document contains notes on the lectures of Alessandro Di Bucchianico and Thomas Klein. And also a summary of the compulsory reading material for each lecture.
This one is the large, detailed summary. It contains almost each detail mentioned during the lectures.
Parts of chapters 2,3,4,6, 9,10,11,16
24 november 2021
40
2021/2022
Samenvatting
Onderwerpen
dsrm
data science
research methods
jbm020
data science research methods
tue
ds
Gekoppeld boek
Titel boek:
Auteur(s):
Uitgave:
ISBN:
Druk:
Meer samenvattingen voor studieboek
Summary DS Research Methods (JBM020) 2020/2021
Alles voor dit studieboek
(2)
Geschreven voor
Technische Universiteit Eindhoven (TUE)
Data Science
Data Science Research Methods (JBM020)
Alle documenten voor dit vak (4)
Verkoper
Volgen
datasciencestudent
Ontvangen beoordelingen
Voorbeeld van de inhoud
Data Science Research Methods
JBM020
,Part 1: method that CAN with FIXED effects
19 april:
o Read: Sections 3.3.1. and 3.3.2. from experimental design
o Read: Chapter 2 from experimental design
3.3.1. p-Value
p-value: quantity of hypothesis testing . Represents the weight of
evidence against a null hypothesis.
In a graph, the p-value is the area to the right of the X value. We can thus
interpret is as the highest significance level for which we still accept H 0. If
α is pre-set, H 0 is rejected if the p-value is less than α , otherwise it is
accepted.
One-sided upper-tailed test: p-value is the area to the right of the test
statistic.
One-sided lower-tailed test: p-value is the area to the left of the test
statistic.
Two-sided test: p-value is double the area to the right or left (the smallest)
of the test statistic.
3.3.2. Type I and Type II Errors
Type I Error: the error of rejecting an H 0 when it is true.
Type II Error: the error or accepting an H 0 when it is false.
The significance level α =P∨(reject H 0∨H 0 true) is the probability that we
reject H 0 when it is true. This Type I error can be made smaller by
decreasing the value of α . However, than the Type II error becomes more
probable. It is a trade-off. The probability of an Type II error is
β=P( accept H 0 ∨H 0 false). Its value depends on the real value of μ. Therefore
is it different for each value of μ. As the separation between the mean
under H 0 and the assumed true mean under H 1 increases, β decreases.
The probability of correctly accepting an H 0 is 1−α and the probability of
correctly rejecting an H 0 is 1−β .
The optimal solution depends on the consequences of each type of error.
This makes it situation-specific.
,Chapter 2: One-Factor Designs and the Analysis
of Variance
2.1. One-Factor Designs
It studies the impact of a single factor on some performance measure.
Notation:
Y is the dependent variable.
X is the independent variable.
ε is a random error component, representing all other factors than X that
have an influence.
To show there is a functional relationship: Y =f ( X , ε ) .
Y ij → i is the value of Y for this person and j is the value of X .
Replicated experiment: it has more than one data value at each level
of the factor under study.
The number of rows, different values of Y , is the number of replicates. The
total number of experimental outcomes is the number of rows times the
number of columns.
2.1.1. The Statistical Model
An example is Y ij =μ+ τ j +ε ij with μ the mean and τ j the differential effect
associated with the j th level of X and ε ij the noise of error.
Those last three values need to be estimated.
2.1.2. Estimation of the Parameters of the Model
R
A column means is denoted as Y ∙ j=∑ Y ij / R .
i=1
Grand mean: the average of all RC data points, Y ∙ ∙ . It is the sum of all
values divided by RC ór the sum of all column means divided by C . If the
number of data points is not equal for each row, it can also be computed
as a weighted average of the columns means.
As criterion for those mean estimates, there is least squares: the optimal
estimation is the estimate that minimizes the sum of the squared
differences between the actual values and the “predicted values”. This
estimate is often labelled as e . It used T j as an estimate for τ j (using Y ∙ j−Y ∙ ∙
) and M as an estimate for μ (using Y ∙ ∙).
2 2
e ij =( Y ij −M −T j ) ∧∑∑ ( e ij ) =∑ ∑ ( Y ij −M −T j )
The ∑ ∑ is a summation over all R and again over all C , order does not
matter.
, From derivation the estimates, we get e ij =Y ij −Y ∙∙ .
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper datasciencestudent. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor $3.25. Je zit daarna nergens aan vast.