100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Complete and extensive book summary 'Data Science for Business' + papers - Strategy Analytics course Tilburg University $8.57   Add to cart

Summary

Complete and extensive book summary 'Data Science for Business' + papers - Strategy Analytics course Tilburg University

3 reviews
 159 views  5 purchases
  • Course
  • Institution
  • Book

Summary of all chapters book 'Data Science for Business' and all papers given in the course syllabus. Includes examples, figures, charts and youtube videos for better understanding of the concepts. Based on Strategy Analytics course, Master Strategic Management - Consultancy, Tilburg University

Preview 2 out of 25  pages

  • Yes
  • November 25, 2021
  • 25
  • 2021/2022
  • Summary

3  reviews

review-writer-avatar

By: lluiskarakolev1 • 11 months ago

review-writer-avatar

By: wishaanmanichand • 2 year ago

review-writer-avatar

By: timxpn • 2 year ago

Though usefull, missing chapter 9 & 10 and has quiet some grammar mistakes.

reply-writer-avatar

By: JaelaBoot • 2 year ago

Hi Tim! If you are looking for chapter 9 and 10 these are actually included and can be found from page 20 on. Hope this helps!

avatar-seller
Strategy Analytics – Tilburg University, Strategic Management
Summary book
Data science for Business (Foster Provost & Rom Fawcett)

Chapter 1 – Introduction: Data-Analytic thinking

Widest applications of data-mining techniques can be found in marketing, for tasks as targeted
marketing, online advertising, cross-selling. Data mining is used for general relationship management
to analyze customer behavior in order to manage attrition and maximize expected customer value

Finance industry used data mining for credit scoring and trading, and in operations via fraud
detection and workforce management

Data science involves principles, processes and techniques for understanding phenomena via the
analysis of data. The ultimate goal is to improve decision-making via data science

Data driven decision making (DDD) refers to the practice of basing decisions on the analysis of data,
rather than purely on intuition. DDD is not all-or-nothing practice and different firms engage in DDD
in different ways. The more data-driven a firm is, the more productive it is, even controlling for a
wide range of possible confounding factors. DDD also provides a high ROA, ROE, asset utilization and
market value

Nowadays, business decisions are being made automatically by computer systems. Different
industries have adopted automatic decision-making at different rates -> finance and
telecommunications are early adopters because of the data networks and implementation of massive
scale computing

Data processing is not always data science. Data engineering and processing are critical to support
data science, but are more general

- Data science needs access to data and it often benefits from sophisticated data engineering
that data processing facilities facilitate -> but these technologies are not necessarily data
science = they just support data science
- Data processing technologies are very important for many data-oriented business tasks, that
do not involve extracting knowledge or data-driven decision-making

Big data = datasets that are too large for traditional data processing systems, require new processing
technologies. Big data technologies are used for many tasks, including data engineering -> often used
for implementing data mining techniques, but much more often for data processing in support of the
data mining techniques and other data science activities

 Using big data technologies is associated with significant additional productivity growth

Fundamental principle of data science = data and the capability to extract full knowledge from data,
should be regarded as key strategic assets. Viewing this as assets can lead to the realization of them
as being complementary -> best data science team can yield little value without the appropriate data,
right data often cannot substantially improve decisions without suitable data science talent

Businesses are increasingly driven by data analytics, they have a great professional advantage I being
able to interact competently with and within such businesses -> it will help to envision opportunities
for improving DDD or to see data-oriented competitive threats

Fundamental concepts of data science

1) Extracting useful knowledge from data to solve business problems can be treated
systematically by following a process with reasonably well-defined stages -> it provides a

, framework to structure data analytics problems. Structured thinking about analytics
emphasized the often under-appreciated aspects of supporting decision-making with data
2) From a large mass of data, information technology can be sued to find informative
descriptive attributes of entities of interest. -> this can be used to recursively build models
ot predict churn based on multiple attributes
3) If you look too hard at a set of data, you will find something – but it might not generalize
beyond the data you’re looking at. -> this is overfitting a dataset, you should avoid this.
Concept of overfitting and avoidance permeates data science processes, algorithms and
evaluation methods
4) Formulating data mining solutions and evaluating the results involves thinking carefully
about the context in which they will be used -> consider the application in question. How
are you going to use the data

Churn prediction = One of the ways to calculate a churn rate is to divide the number of customers
lost during a given time interval by the number of active customers at the beginning of the period

 Customer churn (also known as customer attrition) refers to when a
customer (player, subscriber, user, etc.) Online businesses typically
treat a customer as churned once a particular amount of time has
elapsed since the customer's last interaction with the site or service.
 To predict whether a customer will be a churner or non-churner, there
are a number of data mining techniques applied for churn prediction, such as artificial neural
networks, decision trees, and support vector machines
o Churn means “leaving the company”. It is very critical for a business to have an idea
about why and when customers are likely to churn

Chapter 2 – business problems and data science solutions

Data mining process breaks up the overall task of finding patterns from data into a set of well-defined
subtasks -> it is also useful for structuring discussions about data science

Each DDD problem is unique, comprising its own combination of goals, desires, constraints and
personalities. There are sets of common tasks that underlie the business problems

 In collaboration with business stakeholders, data scientists decompose a business problem
into subtasks. The solution of these subtasks can be composed to solve the overall problem
 A subtask that is likely to be part of the solution to any churn problem is to estimate from
historical data

Critical skill in data science is the ability to decompose a data-analytics problem into pieces such that
each piece matches a known task for which tools are available. Recognizing familiar problems and
their solutions avoids wasting time and resources reinventing the wheel

Classification and class probability estimation attempt to predit, for each individual in the
population, which of a (small) set of classes this individual belongs to, most often these classes are
mutually exclusive. Closely related task is scoring or class probability estimation.

- Scoring model applied to an individual produces a score representing the probability that the
individual belongs to each class

Regression (= value estimation) attempts to estimate or predict, for each individual, the numerical
value of some variable for that individual. A regression procedure produces a model that, given an
individual, estimates the value of the particular variable specific to that individual. Regression
predicts how much something will happen

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller JaelaBoot. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.57. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.57  5x  sold
  • (3)
  Add to cart