100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting wiskunde initiatie 2 $14.90   Add to cart

Summary

Samenvatting wiskunde initiatie 2

1 review
 35 views  4 purchases
  • Course
  • Institution

De volledige cursus wiskundige initiatie 2 samengevat. De te kennen leerdoelen per hoofdstuk zijn beschikbaar op het einde van de samenvatting.

Preview 4 out of 47  pages

  • December 10, 2021
  • 47
  • 2021/2022
  • Summary

1  review

review-writer-avatar

By: Thibault29 • 2 year ago

avatar-seller
Samenvatting wiskunde 2


Hoofdstuk 1) Getallenkennis


1.1) Doelen

Ontwikkelveld = ontwikkeling van wiskundig denken

Ontwikkelthema’s:
- Getallenkennis
- Rekenvaardigheid (heeft geen leerlijnen)
- Logisch en wiskundig denken

Getallenkennis heeft 5 generieke delen:
- Inzicht verwerven in hoeveelheden
- Inzicht verwerven in tellen
- Inzicht verwerven in natuurlijke getallen
- Inzicht verwerven in breuken, kommagetallen, procenten en hun onderlinge relaties
- Schatten van hoeveelheden en afronden van getallen

Leerlijnen
→ zie zill-selector

1.2) Definities

Getallenkennis = overkoepelende term voor hoeveelheden en het omgaan met hoeveelheden. Tellen van
hoeveelheden, vergelijken, herkennen, plaatsen in een volgorde, optellen,...

→ Een cijfer is een symbool voor een hoeveelheid. Er zijn tien Arabische cijfers: 0, 1, 2, 3, 4, 5, 6, 7, 8 en 9. → Een
getal kan uit een of meer cijfers zijn samengesteld, maar kan ook andere tekens bevatten, bijvoorbeeld: 1/4; 0,8; 4,5;
3,1415.


Aantal ➔ visuele ondersteuning van een aantal die verschillende vormen kan aannemen

Cijfer ➔ 1 symbool dat een aantal voorstelt in een talstelsel


Getal ➔ hoeveelheid bestaande uit afzonderlijk telbare eenheden


Getalbeeld ➔ een symbolische weergave van een aantal, een rangorde, een verhouding, een
code.
➔ een getal kun je benoemen, kan je schrijven met cijfers, en andere symbolen, kun
je voorstellen met bijvoorbeeld een getalbeeld




1

,1.3) De ontwikkeling van het getalbegrip volgens Piaget


0 - 2 jaar Senso-motorische fase

2 - 7 jaar pré-operationele fase

7 - 11 jaar Concreet-operationele fase

12 jaar Formeel-operationele fase




Ontwikkeling getalbegrip

Senso(ri)motorische fase De baby en de peuter vormt zich een begrip van voorwerpen
(0 – 2 jaar) ▪ voorwerpen bestaan
▪ voorwerpen kunnen verplaatst, samengevoegd, enz. worden

=> Leidt later tot het begrijpen van de één-één-relatie en conservatie van
hoeveelheid.

Pré-operationele fase Vanaf 3 à 4 jaar: kleuter beheerst de één-één-relatie (kan van elkaar
(2 – 7 jaar) verschillende voorwerpen paarsgewijs rangschikken).

MAAR nog geen conservatie van aantal (ook tellen helpt niet) TENZIJ reeksen
geheel gelijk gerangschikt.
Oorzaak: - de kleuters kunnen in gedachte de omgekeerde handeling niet
maken
- de kleuters laten zich leiden door meest opvallende kenmerk

Concreet-operationele fase Kinderen conserveren hoeveelheid en gebruiken de één-één-relatie DUS ze
(7 – 11 jaar) beheersen het getalbegrip.

Kinderen kunnen een groep verdelen in 2 groepen met eenzelfde aantal en ze
kunnen ongelijke stapels voorwerpen gelijk maken.

Formeel-operationele fase Kinderen beheersen het getalbegrip op formeel niveau, zo kunnen de
(12 - … jaar) kinderen ingewikkelder begrippen aan zoals oneindige reeksen en
hypothetische onbekenden (bv. X)



1.3.1) Voorwaarden voor de aanwezigheid van getalbegrip

2 mijlpalen in de vorming van het getalbegrip:
- het beheersen van de één-één-relatie
- het kunnen conserveren




2

, één-één-relatie ➔ De techniek van de één-één relatie geeft kinderen wiskundige vleugels: het is een
krachtig instrument om bepaalde rekenbegrippen zoals o.a. ‘evenveel’, ‘meer’ en
‘minder’ te leren. Over een goede rekentaal beschikken is cruciaal voor de latere
rekenontwikkeling. Bovendien kunnen kleuters met de 1-1 relatie concrete
problemen oplossen die hun actuele getalbegrip nog te boven gaan.

conserveren ➔ Het aantal voorwerpen in een verzameling blijft gelijk, hoe die voorwerpen ook
geplaatst of geordend worden



1.3.2) De sensomotorische fase

1. senso(ri)motorische fase (0-2 jaar): deze fase loopt vanaf de geboorte
tot op het moment dat het kind leert praten. Deze fase wordt gekenmerkt
door een zintuiglijk ervaren van de wereld rond hen heen (zonder zich
daarvan bewust te zijn, zonder erover na te denken)


Binnen deze fase ontdekken de kinderen dat er voorwerpen bestaan en
deze voorwerpen kunnen gestapeld, verplaatst, samengevoegd, enz.
worden.
Alles gebeurt op een zintuiglijke en motorische manier manier zonder dat de kinderen hierbij stilstaan of erover
nadenken. Maar het is wel een belangrijke stap is het later kunnen tellen en omgaan met hoeveelheden, alsook naar
het begrip van de 1-1 relatie en conservatie toe.


1.3.3) De pré-operationele fase

2. pré-operationele fase (2-7 jaar): deze fase behelst de kleuterleeftijd.
De taal ontwikkelt zich en via taal kunnen we ook denken. Binnen deze
fase is het denken volop in ontwikkeling maar dit loopt nog niet altijd
zoals het moet. De kleuters maken nog denkfouten.


Vanaf 3à4 jaar kunnen de kinderen een 1-1 relatie leggen tussen 2
groepen van voorwerpen. De jongste kleuters zijn op die manier in staat om hoeveelheden te vergelijking met elkaar
zonder dat ze hoeven te tellen (want dit lukt pas later - zie verder in de cursus).
Het kunnen conserveren is heel wat moeilijker. Een kleuter is zelfs nog niet in staat tot het kunnen conserveren van
hoeveelheid.
Volgende proef van Piaget toont dit ook aan: er staat een rij vazen op tafel en er wordt gevraagd aan een kleuter om
in elke vaas een bloem te steken. Het kind zegt hierbij dat er evenveel bloemen als vazen zijn. Maar wanneer Piaget
de bloemen uit de vazen neemt en ze samen bundelt, zegt het kind dat er meer vazen zijn dan bloemen. De rij vazen
is immers langer, waardoor het kind zich visueel laat misleiden.
Piaget ontdekte hierbij dat ook het tellen (bij de oudste kleuters) geen hulp biedt. Hij vroeg een vijfjarige om een rij
van zes glazen en rij van zes flessen te tellen. De vijfjarige kon zeggen dat er 6 glazen en 6 flessen waren, maar toch
hield het kind vol dat er meer flessen waren dan glazen: de rij van de flessen was immers langer dan die van de
glasen.



3

, Er kunnen 2 oorzaken toegewezen worden aan het feit dat kleuters moeilijk tot conserveren komen, nl.
- de kleuters kunnen in gedachten niet de omgekeerd handeling maken (bv. in gedachten de bloemen terug in de
vazen stoppen zodat ze inzien dat het er evenveel zijn gebleven)
- de kleuters laten zich (mis)leiden door het meest opvallende kenmerk (wat de kleuters zien is voor hen van
doorslaggevende aard, nl. de plaats die de vazen inneemt is veel groter dan de plaats van de samengebundelde
bloemen)



1.3.4) De concreet-operationele fase

3. concreet-operationele fase (7-11 jaar): deze fase komt overeen met de lagere
schoolleeftijd. Het denken is operationeel maar wordt nog ondersteund door
concrete ervaringen.
Kinderen in deze fase beheersen het getalbegrip, dit wil zeggen dat ze zowel
inzicht hebben in het conservatieprincipe als in de 1-1 relatie.


1.3.5) De formeel-operationele fase


4. formeel-operationele fase (vanaf 11 jaar): binnen deze fase is het denken operationeel en dit op een abstract
niveau.
De vertaling van deze 4 fasen naar getalbegrip toe vind je hiernaast terug.
Binnen deze fase hebben de kinderen op een abstracte manier inzicht in het getalbegrip, de onbekende x is hiervan
een voorbeeld (bv. 2x=4 > wat is x?).


1.4) Het ontwikkelingsproces van het leren tellen

6 fasen:
Subitizing ➔ herkennen van kleine hoeveelheden
➔ weet niet hoeveel het samen is

Akoestisch tellen ➔ opzeggen van de telrij (bv: liedje, versje,...)

Asynchroon tellen ➔ 1,2,3,4,8
Synchroon tellen ➔ 1,2,3,4,5
➔ dingen tellen

Oog krijgen voor verschillende ➔ uiteenlopende betekenissen van getallen leren
betekenissen van getallen ➔ hoeveelheid, volgorde, maat, huisnummer,...

Resultatief tellen ➔ antwoorden op de vraag ‘HOEVEEL?’

Verkort tellen ➔ 3+3 = 6
➔ niet alles apart tellen




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller inaravanongeval. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.90. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

79271 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$14.90  4x  sold
  • (1)
  Add to cart