100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Molecular Principles of development $14.64   Add to cart

Summary

Summary Molecular Principles of development

 38 views  3 purchases
  • Course
  • Institution
  • Book

Summary of the course principles of molecular biology. Information collected from the lectures, Q&A's, Computer practicals and book 'Principles of Development'.

Preview 4 out of 60  pages

  • Yes
  • December 20, 2021
  • 60
  • 2021/2022
  • Summary
avatar-seller
Index
Very early development: ..................................................................................................................... 3
Gastrulation and mesoderm induction ................................................................................................... 4
Patterning of the germ layers.......................................................................................................... 4
Mesoderm induction: ...................................................................................................................... 4
How to put a break on the mesoderm induction ............................................................................ 5
Early development and germ layers in mouse ................................................................................ 5
Cleavage and formation of the blastula .......................................................................................... 6
A-P patterning in mice ..................................................................................................................... 7
Symmetry breaking by migration of visceral endoderm to anterior............................................... 7
Vertebrate axis formation ............................................................................................................... 8
Mesoderm induction in mouse ....................................................................................................... 8
In mice, the same BMP antagonist are common then in Xenopus ................................................. 9
Morphogenesis ...................................................................................................................................... 10
Cadherins ....................................................................................................................................... 10
Immunoglobulin superfamily ........................................................................................................ 11
Integrins ......................................................................................................................................... 11
Actin filaments............................................................................................................................... 12
Involution (Xenopus): .................................................................................................................... 12
Convergent extension ................................................................................................................... 12
Epiboly ........................................................................................................................................... 14
Gastrulation in zebrafish ............................................................................................................... 14
Morphogenesis ...................................................................................................................................... 15
A-P patterning and Hox gene function .......................................................................................... 15
Temporal order of somite formation ............................................................................................ 15
FGF signalling ................................................................................................................................. 16
Retinoic Acid (RA) .......................................................................................................................... 16
FGF and RA gradients during somite formation ............................................................................ 16
The clock and wavefront model .................................................................................................... 17
Molecular mechanism of segmentation ....................................................................................... 18
Hox gene function ......................................................................................................................... 18
Function of several members of Hox genes .................................................................................. 19
Ectopic expression of Hox genes ................................................................................................... 20
Molecular control of Hox gene expression ................................................................................... 20
Organogenesis ....................................................................................................................................... 21



1

, Antero-Posterior Patterning and Organogenesis .......................................................................... 21
AER is required for limb outgrowth............................................................................................... 21
FGF signaling for limb outgrowth .................................................................................................. 21
Proximo-distal patterning.............................................................................................................. 21
Zone of polarizing activity (ZPA) .................................................................................................... 22
Sonic Hedgehog signaling in limb (Shh)......................................................................................... 22
Dorso-Ventral patterning .............................................................................................................. 23
Gene regulation in limb development and disease....................................................................... 24
Germ cells .............................................................................................................................................. 26
The development of germ cells ..................................................................................................... 26
Meiosis .......................................................................................................................................... 29
Genomic imprinting ............................................................................................................................... 31
Fertilization............................................................................................................................................ 34
Fertilization of a mammalian egg .................................................................................................. 34
Calcium wave at fertilization ......................................................................................................... 36
Assisted reproductive technology ................................................................................................. 37
Determination of sexual phenotype ............................................................................................. 38
Determination sex of the germ cells ............................................................................................. 40
Summary: ...................................................................................................................................... 41
Dosage compensation ................................................................................................................... 41
How do cells count and choose chromosomes for inactivation?.................................................. 42
Cell differentiation................................................................................................................................. 44
Transcription regulation in cell differentiation ............................................................................. 44
Cells stop dividing during differentiation ...................................................................................... 48
Cell cycle and differentiation factors are biochemically linked .................................................... 48
Stem cells and their niche ............................................................................................................. 49
How would this work molecularly in response to physiological needs? ....................................... 50
Different modes of self-renewal contribute to tissue homeostasis.............................................. 51
Cellular (re)programming .............................................................................................................. 52
Another way to induce cells to change fate: ................................................................................. 54
Cloning by nuclear transfer ........................................................................................................... 54
Stem cells in homeostasis, repair & regenerative medicine ......................................................... 55
Genetic lineage tracing can be used to follow cell fate ................................................................ 56
Evo devo ................................................................................................................................................ 58




2

, - Specification: Cells have received sufficient information to develop according to their normal
fate, for example when isolated. However, they can still be re-specified to a different fate
when transplanted to a different position, meaning they are not yet determined.
- Determination: Stable change in fate (irreversible). Cells can no longer be re-specified.
- Differentiation: Cell become functionally different, become different cell types.
Very early development:
- Maternal to zygotic transition (MTZ)
o Mid-blastula stage (xenopus & zebrafish)
o Maternal RNA degradation → zygotic genome activation (ZGA)
o Mid-blastula transition: when transcription starts. MBT used in flies, fish, frogs
MBT: Transition at the mid-blastula stage, involving (1) onset of mbryonic transcription, (2)
cell cycle lengthening, (3) acquisition of cell motility

- Dorsal ventral body axis (after ZGA)
o Frogs: sperm entry (future ventral side) → cortical rotation (V→D) with wnt (11 and
5a) signals to the nucleus via B-catenin → accumulation of B-catenin in nuclei on the
future dorsal side of the blastula, VegT is also present to express the transcription
factor Siamosis which activate goosecoids (important in the process for making the
organizer) which defines the Nieuwkoop centre
When there is free β-catenin, normally, in the absence of Wnt, it is degraded by the APC/Axin/GSK-
3/CK1γ complex. This way β-catenin cannot be transported to the nucleus. When Wnt is present, Wnt
binds to Frizzled (Wnt receptor) and the APC/Axin/GSK-3/CK1γ complex binds to phosphorylated
LRP6/Frizzled. Β-catenin accumulates and binds in the nucleus to the transcription factor TCF.
Transcription takes place in the nucleus. On the future dorsal side, the Wnt signalling pathway is
activated. Wnt11b mRNA and other determinants (Dishevelled) relocate to prospective dorsal region.
There is dorsal β-catenin accumulation. The sperm entry point, which is random, will determine where
dorsal and ventral sides will be.

The Tcf3 transcription factor translocate its cofactor β-catenin to the nucleus.
• β-catenin can induce dorsal axis at ventral side
• Knockdown of fzd7 (Xfz7, Wnt receptor): Loss of dorsal structures
• Also: Wnt inhibitors ventral (pre-MBT

o Zebrafish: sperm entry not involved, no cortical rotation. Wnt 8a mRNA is
transported to the future dorsal side by oriented parallel arrays of microtubules and
enters the blastoderm (animal side). At the mid-blastula transition: B-catenin moves
into the nuclei of the cells of the dorsal yolk syncytial layer → accumulation → where
it induces the expression of a zygotic gene VegT encoding the transcription factor
Dharma → induction of the organizer/shield genes
Sia1 (frogs) and Dharma (zebrafish) is activated at the MBT in response to Wnt signaling.

Nieuwkoop centre (blastula stage) and Spemann Mangold organizer (gastrula stage). The
Nieuwkoop centre is the organizer of the organizer/shield.
Differences in mesoderm induction by dorsal and ventral vegetal regions.
The dorsal vegetal region of the Xenopus blastula, which contains the
Nieuwkoop center, induces notochord and muscle from animal cap tissues,
whereas ventral vegetal cells induce blood and associated tissues




3

, Gastrulation and mesoderm induction
➔ Fate map, gastrulation
➔ Mesoderm induction

Endoderm & ectoderm is maternally specified.

Patterning of the germ layers
Mesoderm induction: Vegetal region




Maternal VegT in the vegetal region activates the transcription of nodal-related genes (Xnr and
Derrière). The presence of nuclear β-catenin on the dorsal side stimulates nodal-related transcription,
resulting in a dorsal-to-ventral gradient in the Nodal related proteins. These induce mesoderm and, at
high doses, specify the Spemann organizer on the dorsal side(where the most intense Nodal signaling
is).

Mesoderm induction:
Mesoderm in Xenopus is specified by endoderm signals in prospective ectoderm. Mesoderm is not
maternally specified. How do you specify mesoderm?:
Bmp4 helps patterning the mesoderm, specifying ventral mesodermal fate.
• Ectodermin inhibits its signaling in the animal pole, important for ectodermal fate, by ubiquitinating Smad4 (the “co-Smad”). This
restricts both BMP and Nodal signaling to equatorial zone which then will form mesoderm.
• BMP signaling antagonists like noggin, chordin, Cerberus inhibit its signaling at the dorsal side (Organizer), restricting ventral fate to
ventral and lateral positions in the margin

Signals:

- Foxi1e (foxi1): activated ectoderm formation and controls cell position in Xenopus blastula
(prevent mixing)
- VegtT: specifies endoderm
- Ectodermin (Trimm33): specify ectoderm
- Vg-1 (gdf1) TGFB family: mesoderm induction

Transcription factors respond to TGFB family gradients and act as master regulators




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller elineedwards. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.64. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

79373 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$14.64  3x  sold
  • (0)
  Add to cart