100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Thermodynamica $5.30   Add to cart

Summary

Samenvatting Thermodynamica

 38 views  0 purchase
  • Course
  • Institution
  • Book

Cursus + slides samengevat

Preview 3 out of 23  pages

  • No
  • Hoofdstukken 16 tot 19
  • December 21, 2021
  • 23
  • 2020/2021
  • Summary
avatar-seller
Samenvatting Thermodynamica
Hoofdstuk 16: Temperatuur en Warmte
16.1 Thermodynamisch Evenwicht, Nulde Wet
• Twee systemen in thermisch contact met elkaar kunnen veranderingen ondergaan in hun
macroscopische eigenschappen zoals lengte, druk, elektrische weerstand, enz.
o Vb. 2 metalen blokken, 1 in vuur -> zet uit => tweede blok zet ook uit
• Thermisch contact betekent dat verwarmen van het ene lichaam leidt tot macroscopische
veranderingen in het andere. Zoniet zijn de twee systemen thermisch geïsoleerd.
• Wanneer er geen macroscopische veranderingen plaatsvinden, of stoppen, zijn de twee systemen in
thermodynamisch evenwicht en hebben ze dezelfde temperatuur.
• Zijn twee systemen A en B elk in thermodynamisch evenwicht met systeem C, dan zijn A en B ook in
thermodynamisch evenwicht met elkaar. Dit is de Nulde Wet van de Thermodynamica.

Temperatuur
• Per definitie hebben systemen in thermodynamisch evenwicht dezelfde temperatuur.
• Iedere gepaste macroscopische eigenschap kan worden gebruikt als maat voor de temperatuur.
o Een thermometer is een klein systeem met een bepaalde macroscopische eigenschap
waarvan de waarde wordt gebruikt als een maat voor temperatuur (vb.: lengte van een
vloeistofkolom)
o Een voorbeeld van een thermometer is de constant volume gasthermometer. Deze meet
de druk van een constant volume gas en gebruikt deze waarde als maat voor de
temperatuur.

Vb. oude kookthermometer (bevat kleine
vloeistofkolom).


Gasthermometers en de Kelvin Schaal
• De SI temperatuurschaal wordt gedefinieerd aan de hand van het tripelpunt van water, d.i. de
temperatuur waarbij de vaste, vloeibare en gasvormige toestanden van water naast elkaar bestaan.
Deze schaal wordt gedefinieerd met een gasthermometer.
o De temperatuur bij het tripelpunt is per definitie 273,16 K.
o De temperatuur waarbij de druk in een gas nul is, is het absolute nulpunt.
o Deze twee gedefinieerde temperaturen bepalen de kelvin schaal.

Andere Temperatuurschalen
• Een graad Celsius heeft dezelfde grootte als een kelvin, maar het nulpunt van de Celsiusschaal ligt bij
273,15 K — het vriespunt van water onder normale omstandigheden:
• Een graad Fahrenheit is 5/9 maal de grootte van een graad Celsius, en het nulpunt van de
Fahrenheitschaal ligt 32˚F onder het vriespunt van water:

16.2 Warmtecapaciteit en Soortelijke Warmte
• Warmte is energie die getransfereerd wordt van het ene voorwerp naar het ander, enkel en alleen
omdat er een temperatuursverschil is tussen de voorwerpen.
o SI-eenheid: joule (J) (warmte is energie!).
o Oude eenheid: de calorie (cal) (1 cal = 4,184 J).
• De warmtecapaciteit C van een voorwerp is een maat voor de warmte ΔQ nodig om de temperatuur
met één eenheid te laten veranderen: ΔQ = C ΔT.

Strikt genomen verwijst warmte alleen naar energie in doorvoer. Na warmteoverdracht zeggen we dat de interne
energie of thermische energie van het object is toegenomen, niet dat het meer warmte bevat. Dit onderscheid
weerspiegelt het feit dat andere processen dan verwarming - zoals overdracht van mechanische 1
of elektrische energie - ook de temperatuur van een object kunnen veranderen.

,• Merk op:
o De warmtecapaciteit C wordt bepaald door het voorwerp, en kan dus van voorwerp tot voorwerp
verschillen. Het hangt af van de massa en waaruit het gemaakt is.
o De eenheid is J/K of J/°C. SI specifieke warmte = J/kg K

De soortelijke warmte c van een stof is de warmtecapaciteit per eenheid van massa: ΔQ = mc ΔT.
• Merk op:
o Soortelijke warmte is een materiaalconstante (zie tabel), maar kan afhankelijk zijn van de druk p en T.
o Is c afhankelijk van T, dan geldt: dQ = mc dT toestand voorwerp bepaalt hoeveelheid SW nodig




Evenwichtstemperatuur
• Wanneer twee stoffen op verschillende temperatuur in thermisch contact met elkaar worden gebracht,
zonder verlies aan energie, komen ze in thermisch evenwicht bij een temperatuur die afhangt van hun
massa en hun soortelijke warmte: m1 c1 ΔT1 + m2 c2 ΔT2 = 0
o Hierbij zijn de ΔT’s de temperatuurverschillen tussen de evenwichtstemperatuur en hun
oorspronkelijke temperatuur.

16.3 Warmtetransportmechanismen
1. Conductie
• Conductie is warmtetransport door direct fysisch contact.
• Moleculen in een gebied met hogere temperatuur geven door botsing energie
door aan moleculen in een gebied met lagere temperatuur.
• Er is geen transport van moleculen (massa)!
• De snelheid H waarmee warmte wordt getransporteerd via conductie, d.i. de
energie die per tijdseenheid door een voorwerp stroomt, hangt af van het
materiaal en de vorm van het voorwerp.
• De eenheid van H is J/s of W.

Vb.: Warmtetransport via conductie door vlakke plaat. met k de thermische
geleidbaarheid van het materiaal. Merk op:
• k is materiaalconstante.
• Warmtetransport van hoge temperatuur naar lage temperatuur, vandaar – teken.
(Δx wijst naar hogere temperatuur)

H/A = warmtestroomdichtheid

H = dQ/dt is de snelheid van de warmtestroom in Watt

Zijn de oppervlakken met hoge en lage temperatuur niet gelijk, moet men de differentiaalvorm van de vgl.
gebruiken:

• Vb.: (via integratie) warmtetransportsnelheid door een isolatielaag (straal R2) rond cilindervormige buis
met lengte L en straal R1:

T1 = binnentemperatuur
T2 = buitentemperatuur




2

, zie HB p. 309

2. Convectie
• Convectie is warmtetransport door stroming van een fluïdum: door opwarmen ontstaan
dichtheidsverschillen en het fluïdum met de kleinste dichtheid zal stijgen. Fluïdum met grootste
dichtheid zakt naar bodem. Wet van Archimedes: stoffen met kleinste
• Hier gebeurt dus transport van moleculen (massa)! ρ zullen naar boven gaan.
• De snelheid van warmtetransport is bij benadering evenredig met het temperatuurverschil.
• Opm.: fluïdum = vloeistof of gas

3. Straling
• Straling is warmtetransport door elektromagnetische straling.
o Het uitgestraald vermogen via opp. A bij temperatuur T wordt gegeven door de wet van Stefan-
Boltzmann:
o met: ơ = 5,67 x 10–8 W/m2.K4, de constante van Stefan- Boltzmann.
o e de emissiviteit (tussen 0 en 1). e drukt uit hoe goed een lichaam warmte uitstraalt. Een lichaam met
hoge e, is ook een goed absorbeerder van warmte.
0: geen straling, 1: perfecte (zwarte straling)

• Een lichaam met e = 1 is een zwart lichaam (black body): dit absorbeert alle straling.
• Opm.: netto uitgestraald vermogen door een lichaam = zelf uitgestraald – opgenomen straling van
omgeving = Houtkachels zijn vaak zwart geverfd om hun emissievermogen te
verhogen. Thermosflessen hebben daarentegen een glanzende coating om straling te verminderen.

16.4 Energetisch Evenwicht
• Een systeem is in thermisch energetisch evenwicht (thermal energy balance) wanneer het tempo
waarmee het energie wint gelijk is aan het tempo waarmee het energie verliest.
o Een systeem in thermisch energetisch evenwicht behoudt een constante temperatuur.
o Als het verlies groter is dan de winst koelt het systeem af.
o Als de winst groter is dan het verlies warmt het systeem op.




Vb: Temperatuur van de Aarde
• De aarde ontvangt energie van de zon tegen ongeveer 240 watt per vierkante meter. In de
veronderstelling dat de emissiviteit gelijk is aan 1, wat zou de gemiddelde temperatuur zijn van de
aarde?
o INTERPRET: This is a problem about energy balance. The heat loss mechanism is radiation.
o DEVELOP: In energy balance, the rate of energy arriving per square meter (240 W/m2) equals the rate
going out, namely eơ T4 W/m2. Equating the two with e = 1 gives 240 W/m2 = ơ T4.
o EVALUATE: Solving gives 255-273 = -18°C
o ASSESS: Make sense? This temperature seems in the right
ballpark, but a bit low for a global average; it’s –18˚C or 0˚F. In fact, the natural greenhouse effect
keeps Earth some 33˚C warmer, at about 288 K or 15˚C.

3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Studente02. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.30. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.30
  • (0)
  Add to cart