100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Calculus 2 Practice Exam $7.49
Add to cart

Exam (elaborations)

Calculus 2 Practice Exam

 5 views  0 purchase
  • Course
  • Institution

The document contains various questions on the topics of calculus 2. The questions are brief and understandable and should be solved in under 2 hours. Some questions may require you to spend some more time than the other but all and all, read every question thoroughly and this paper may help you a ...

[Show more]

Preview 2 out of 5  pages

  • December 29, 2021
  • 5
  • 2020/2021
  • Exam (elaborations)
  • Answers
avatar-seller
18.02 Final Exam
No books, notes or calculators.
15 problems, 250 points.

Useful formula: cos2 (θ) = 12 (1 + cos(2θ))

Problem 1. (20 points)
a) (15 pts.) Find the equation in the form Ax + By + Cz = D of the plane P
which contains the line L given by x = 1 − t, y = 1 + 2t, z = 2 − 3t and the point
(- 1, 1, 2).
b) (5 pts.) Let Q be the plane 2x + y + z = 4. Find the component of a unit normal
vector for Q projected on a unit direction vector for the line L of part(a).

Problem 2. (15 points)
Let L denote the line which passes through (0,0,1) and is parallel to the line in the
xy-plane given by y = 2x.
a) (5 pts.) Sketch L and give its equation in vector-parametric form.
b) (5 pts.) Let P be the plane which passes through (0,0,1) and is perpendicular to
the line L of part(a). Sketch in P (above) and give its equation in point-normal form.
� (0, 0, 1) lies on L. Write down the method or
c) (5 pts.) Suppose that the point P =
formula you would use to find the point P ∗ which is: (i) on L; (ii) the same distance
away from the point (0,0,1) as P ; and is (iii) on the other side of P from P .

Problem 3. (20 points) ⎡ ⎤
1 0 3
Given the 3 × 3 matrix: A a = ⎣ −2 1 −1 ⎦:
−1 1 a
a) (5 pts.) Let a = 2: show that | A2 | = 0

⎤ ⎡ ⎤
x 0
b) (7 pts.) Find the line of solutions to A2 ⎣ y ⎦ = ⎣ 0 ⎦
z 0
⎡ ⎤
∗ ∗ ∗
c) (8 pts.) Suppose now that a = 1, and that A1 −1 = ⎣ −3 p 5 ⎦. Find p.
∗ ∗ ∗

Problem 4. (10 points)
Let r(t) = �cos(et ), sin(et ), et �.
r� (t)
a) (5 pts.) Compute and simplify the unit tangent vector T(t) = .
| r� (t) |
b) (5 pts.) Compute T� (t)


1

, Problem 5. (20 points)
� y
Consider the function F (x, y, z) = z x2 + y + 2 :
z
a) (10 pts.) The point P0 : (1, 3, 2) lies on the surface F (x, y, z) = 7. Find the
equation of the tangent plane to the surface F = 7 at P0 .
b) (5 pts.) If starting at P0 a small change were to be made in only one of the
variables, which one would produce the largest change (in absolute value) in F ? If
the change is this variable was of size 0.1, approximately how large would the change
in F be ?
c) (5 pts.) What distance from P0 in the direction ±�−2, 2, −1� will produce an
approximate change in F of size 0.1 units, according to the (already computed) lin­
earization of F ?

Problem 6. (15 points)
2
Let f (x, y) = x + 4y + .
xy
a) (10 pts.) Find the critical point(s) of f (x, y)
b) (5 pts.) Use the second-derivative test to test the critical point(s) found in part(a).

Problem 7. (10 points)
Let P be the plane with equation Ax + By + Cz = D and P0 = (x0 , y0 , z0 ) be a point
which is not on P.
Use the Lagrange multiplier method to set up the equations satisfied by the point
(x, y, z) on P which is closest to P0 . (Do not solve.)

Problem 8. (15 points) √
a) (10 pts.) Let F (x, y, z) be a smooth function of three variables for which �F (1, −1, 2) =
�1, 2, −2�.
∂F
Use the Chain Rule to evaluate at (ρ, φ, θ) = (2, π4 , − π4 ).
∂φ
(Use x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ.)
b) (5 pts.) Suppose f (x, y) is a smooth, non-constant function. Is it possible that, for
all points (x, y), the gradient of f at the point (x, y) is equal to the vector �−y, x� ?
Justify (briefly).

Problem 9. (10 points)
�� � 2 � 2√2x
f dA = f (x, y) dy dx .
R 0 x2
a) (5 pts.) Sketch the region R.
b) (5 pts.) Rewrite the double integral as an iterated integral with the order inter­
changed.



2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller radhikakhatri. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52355 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.49
  • (0)
Add to cart
Added