100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
JADS Premaster - Statistics for Data Scientists [R] Cheatsheet $4.83
Add to cart

Other

JADS Premaster - Statistics for Data Scientists [R] Cheatsheet

 0 purchase
  • Course
  • Institution

[R] Cheatsheet for the Statistics for Data Scientists course of the Premaster Data Science and Entrepreneurship.

Preview 2 out of 5  pages

  • January 2, 2022
  • 5
  • 2020/2021
  • Other
  • Unknown
avatar-seller
################################################################################
################################### 0. Setup ###################################
################################################################################

library(e1071) # skewness, kurtosis
library(MASS) # fitdistr
library(outliers) # grubbs.test

################################################################################
################################### 1. Basics ##################################
################################################################################

### 1.1 Dimensions (rows, columns)
dim(data)

### 1.2 First n rows (n = 6)
head(data, n = 6)

### 1.3 Summary
summary(data)

### 1.4 Mean
mean(data$column)

### 1.5 Variance
var(data$column)

### 1.6 Standard Deviation
sd(data$column)

### 1.7 Median
median(data$column)

### 1.8 Mode
mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
mode(data$column)

### 1.9 Min & Max
min(data$column)
max(data$column)

### 1.10 Unique
unique(data$column)

### 1.11 Quantile (probs = c(0, 0.25, 0.50, 0.75, 1.00))
quantile(data$column, probs = c(0, 0.25, 0.50, 0.75, 1.00))

### 1.12 Interquartile Range (IQR)
first <- quantile(data$column, probs = c(0.25))
third <- quantile(data$column, probs = c(0.75))
first - third

### 1.13 Mean Absolute Deviation (MAD)
sum(abs(data$column - mean(data$column))) / length(data$column)

### 1.14 Mean Squared Deviation (MSD)

, (length(data$column) - 1) * var(data$column) / length(data$column)

### 1.15 Skewness
skewness(data$column)

### 1.16 Kurtosis
kurtosis(data$column)

################################################################################
################################## 2. Sampling #################################
################################################################################

### 2.1 Simple Random Sampling (n = 1, replacement = FALSE)
sample(data$column, 1, replace = FALSE)

### 2.2 Simple Random Subsets (N = population size, n = sample size)
N <- 9
n <- 3
combn(N, n)

### 2.3 Systematic Random Subsets (X = population)
X <- 1:9
rbind(X[1:3], X[4:6], X[7:9])

### 2.4 Stratified Random Subsets (X = population)
X <- 1:9
unname(t(expand.grid(X[1:3], X[4:6], X[7:9])))

### 2.5 Bias (E_T = estimated value(s), theta = actual value)
mean(E_T) - theta

### 2.6 MSE (E_T = estimated value(s), theta = actual value)
mse <- mean((E_T - theta)^2)

### 2.7 SE (E_T = estimated value(s), theta = actual value)
sqrt(mean((E_T - mean(E_T))^2))

################################################################################
############################## 4. Random Variables #############################
################################################################################

### 4.1 Bernoulli PMF (k = successes, n = observations, p = probability)
k <- 10
n <- 20
p <- 0.5
dbinom(k, size = n, prob = p)

### 4.2 Bernoulli CDF (k = successes, n = observations, p = probability)
k <- 10
n <- 20
p <- 0.5
pbinom(k, size = n, prob = p)

#### 4.3 Normal PDF (x = value, mu = mean, sigma = var)
x <- 1
mu <- 0
sigma <- 1
dnorm(x, mean = mu, sd = sqrt(sigma))

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller tomdewildt. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.83. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

65507 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$4.83
  • (0)
Add to cart
Added