100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Wiskunde met bedrijfseconomische toepassingen 1e semester voor hi(b) $6.31   Add to cart

Summary

Samenvatting Wiskunde met bedrijfseconomische toepassingen 1e semester voor hi(b)

 70 views  1 purchase
  • Course
  • Institution

Samenvatting van de theorie. Het volledige boek en notities. Naar bewijzen is enkel gerefereerd omdat deze letterlijk in het boek staan.

Preview 4 out of 37  pages

  • January 14, 2022
  • 37
  • 2020/2021
  • Summary
avatar-seller
1. Verzamelingen en functies
1.1 Verzamelingen

Verzameling = het geheel v/e aantal objecten, een zak met elementen.
Elk object uit een verz = element v/d verz.
een verz kan een eindig of een oneindig aantal elementen bevatten.
lege verz = ∅
Er zijn 2 mogelijke notaties:
- Als een beschrijving: 𝐴 = {𝑥 ∈ ℤ |𝑥 𝑖𝑠 … }
- Als een opsomming: 𝐴 = {𝑒𝑙1, 𝑒𝑙2, 𝑒𝑙2, … }

2 verz zijn gelijk als ze exact dezelfde elementen bevatten.
- 𝑥 behoort tot A: 𝑥 ∈ 𝐴
- 𝑥 behoort niet tot A: 𝑥 ∉ 𝐴

Deelverzameling = een verz B is een deelverzameling v/e verz A indien elk el van B ook tot A behoort.
=𝐵 ⊆𝐴
Strikte deelverz = als we zeker zijn dat er een el bestaat dat tot A behoort maar niet tot B.
=𝐵 ⊂𝐴

Bewerkingen voor 2 gegeven verz A en B:
- Doorsnede: 𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑒𝑛 𝑥 ∈ 𝐵} (alles wat in A en B zit)
- Unie: 𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑓 𝑥 ∈ 𝐵} (alles in B, alles in A en alles in de doorsnede)
- Verschil: 𝐴 ∖ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑒𝑛 𝑥 ∉ 𝐵} (alles in A, maar niet in B)
- Productverzameling: 𝐴 × 𝐵 = {(𝑥, 𝑦)|𝑥 ∈ 𝐴 𝑒𝑛 𝑦 ∈ 𝐵} (koppels met 1e el uit A en 2e uit B)

1.2 Relaties

!Relatie = een relatie v/e verz A naar een verz B is een deelverz P v/d productverzameling 𝐴 × 𝐵, het
verband tussen A en B.
Men kan een relatie aanschouwelijk maken d.m.v. een grafische voorstelling aan de hand van pijlen.
Notaties: (𝑥, 𝑦) ∈ 𝑅 of 𝑥 𝑅 𝑦 (x staat in relatie met y)

Definitieverzameling of domein van R = de deelverz van A met als elementen alle 𝑥 ∈ 𝐴 waarvoor er
een 𝑦 ∈ 𝐵 bestaat waarvoor 𝑥 𝑅 𝑦.
Beeld of bereik van R = de deelverz van B die alle elementen y bevat waarvoor er een 𝑥 ∈ 𝐴 bestaat
met 𝑥 𝑅 𝑦.

Eigenschappen bij een verz die in relatie staat met zichzelf 𝑅 ⊆ 𝐴 × 𝐴:
- Reflexief: indien voor alle 𝑥 ∈ 𝐴 geldt dat 𝑥 𝑅 𝑥, (𝑥, 𝑥) ∈ 𝑅, of een pijl naar zichzelf.
- Symmetrisch: indien voor elke 𝑥, 𝑦 ∈ 𝐴 waarvoor 𝑥 𝑅 𝑦, ook 𝑦 𝑅 𝑥, een pijl in beide richtingen.
- Transitief: indien voor elke 𝑥, 𝑦, 𝑧 ∈ 𝐴 waarvoor zowel 𝑥 𝑅 𝑦 als 𝑦 𝑅 𝑧, ook 𝑥 𝑅 𝑧, een pijl van x
naar y en een pijl van y naar z, betekent ook een pijl van x naar z.
- Antisymmetrisch: indien voor elke 𝑥, 𝑦 ∈ 𝐴 met 𝑥 ≠ 𝑦 waarvoor 𝑥 𝑅 𝑦, dan is (𝑦, 𝑥) ∉ 𝑅, als x in
relatie staat met y, staat y niet in relatie met x, er komt nooit een pijl terug.
- Equivalentierelatie: indien de relatie reflexief, symmetrisch en transitief is.
- Orderelatie: indien de relatie reflexief, antisymmetrisch en transitief is.
- Totaal geordend: een orderelatie met de eigenschap dat elke 2 el (𝑥, 𝑦) ∈ 𝐴 ofwel 𝑥 𝑅 𝑦, ofwel
𝑦 𝑅 𝑥. Elke el staat i/e relatie met elk ander el uit de verz.

Equivalentieklasse van x = een deelverz van alle el die in relatie staan met x.

,Beschouw een verz A, waarvoor we een orderelatie 𝑅 ⊆ 𝐴 × 𝐴 kennen. Veronderstel dat B een
deelverz is van A:
- Maximaal element b = 𝑥 𝑅 𝑏, voor alle 𝑥 ∈ 𝐵. Een pijl komt van alle andere.
- Minimaal element b = 𝑏 𝑅 𝑥, voor alle 𝑥 ∈ 𝐵. Een pijl naar alle andere.
- Bovengrens van B is a = 𝑎 ∈ 𝐴 en 𝑥 𝑅 𝑎 voor alle 𝑥 ∈ 𝐵. Een pijl uit alle elementen naar a.
- Ondergrens van B is a = 𝑎 ∈ 𝐴 en 𝑎 𝑅 𝑥 voor alle 𝑥 ∈ 𝐵. Er komt een pijl uit naar alle elementen.
Beschouw nu de deelverz C van A die bestaat uit alle bovengrenzen van B. Analoog beschouw de
deelverz D van A die bestaat uit alle ondergrenzen van B:
- Supremum s van B = s is minimum element van C. Het minimum el v/d bovenste deelverz. De
kleinste bovengrens.
- Infimum i van B = maximum element van D of v/d onderste deelverz. De grootste ondergrens.

Hasse-diagram = een pijlenvoorstelling, rekening houdend met de reflexiviteit en de transiviteit.

1.3 Functies

!Functie = een relatie 𝑅 ⊆ 𝐴 × 𝐵 is een functie indien voor elke 𝑥 ∈ 𝐴 er ten hoogste één el 𝑦 ∈ 𝐵
bestaat waarvoor 𝑥 𝑅 𝑦.
Notatie: 𝑓: 𝐴 → 𝐵, 𝑦 = 𝑓(𝑥) of 𝑥 ↦ 𝑦 = 𝑓(𝑥)
x is hier de onafhankelijke variabele of het argument v/d functie.
y is hier de afhankelijke variabele of de functiewaarde of het beeld van x onder f.

!Samenstelling = de samenstelling van 2 functies 𝑓 ∶ 𝐴 → 𝐵 en 𝑔 ∶ 𝐵 ⟶ 𝐶 is de functie “g na f”,
gegeven door 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 ∶ 𝑥 ↦ 𝑔(𝑓(𝑥)).

!Afbeelding = een functie 𝑓 ∶ 𝐴 → 𝐵 is een afbeelding indien er voor elke 𝑥 ∈ 𝐴 juist één el y uit B
bestaat waarvoor 𝑦 = 𝑓(𝑥). Elk el heeft een beeld.
Elke functie is een afbeelding als we haar beperken tot haar domein.

Een afbeelding 𝑓 ∶ 𝐴 → 𝐵 is
- Een !injectie = indien voor alle verschillende x1 en x2 uit A geldt dat ook f(x1) verschilt van f(x2), bij
elk beeld komt ten hoogste één pijl aan.
- Een !surjectie = indien er voor elk el y uit B een corresponderend el x uit A bestaat waarvoor
f(x)=y, in elk beeld komt een pijl aan.
- Een !bijectie = als f zowel injectief als surjectief is, in elk beeld komt net 1 pijl aan.

!Stelling: een afbeelding 𝑓 ∶ 𝐴 → 𝐵 is bijectief als en slechts als er een afbeelding 𝑔 ∶ 𝐵 → 𝐴 bestaat
die voldoet aan (𝑔 ∘ 𝑓)(𝑥) = 𝑥, ∀𝑥 ∈ 𝐴 en (𝑓 ∘ 𝑔)(𝑦) = 𝑦, ∀𝑦 ∈ 𝐵.
Bewijs 1.1.

Onder de voorwaarden v/h bewijs noemt men g daarom de inverse afbeelding van f, en men noteert
𝑔 = 𝑓 −1.

,2. Groepen en velden
2.1 Getallenverzamelingen

Verzamelingen van getallen:
- ℕ = Natuurlijke getallen = alle positieve getallen.
- ℤ = Gehele getallen = alle ronde getallen, zowel positief als negatief.
- ℚ = Rationale getallen = elk getal dat als breuk geschreven kan worden, alle kommagetallen met
een eindig aantal cijfers na de komma. Voor deze getallen bestaat er een onvereenvoudigbare
vorm.
- ℝ = Reële getallen = de irrartionale getallen, p11.

Interval = de verz van alle getallen tussen 2 waarden.

Het optellen en het vermenigvuldigen kunnen ook als functies gezien worden.
Groepsstructuur = zowel de optelling als de vermenigvuldiging voorzien de verz ℝ van een
groepsstructuur.

2.2 Groepen en velden

!Groep = een verz V met een afbeelding ∗∶ 𝑉 × 𝑉 → 𝑉 wordt een groep 𝑉,∗ genoemd indien er aan
de volgende voorwaarden voldaan is:
1) ∗ is inwendig: ∀𝑥, 𝑦 ∈ 𝑉 is 𝑥 ∗ 𝑦 ∈ 𝑉.
2) ∗ is associatief: ∀𝑥, 𝑦, 𝑧 ∈ 𝑉 is (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧).
We mogen voor beide leden dus gewoon 𝑥 ∗ 𝑦 ∗ 𝑧 schrijven.
3) Er bestaat een neutraal el = 𝑛 ∈ 𝑉, dat voldoet aan 𝑥 ∗ 𝑛 = 𝑥 = 𝑛 ∗ 𝑥 voor alle 𝑥 ∈ 𝑉.
4) Elk el 𝑥 ∈ 𝑉 heeft een symmetrisch el = 𝑥̅ ∈ 𝑉, dat voldoet aan 𝑥 ∗ 𝑥̅ = 𝑛 = 𝑥̅ ∗ 𝑥.

De vermenigvuldiging is geen groep, enkel zonder 0.

Commutatieve groep = een groep die ook commutatief (∀𝑥, 𝑦 ∈ 𝑉 ∶ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥) is.

Veldstructuur = zowel de optelling als de vermenigvuldiging geven aanleiding tot een
groepsstructuur, de abstracte interpretatie van dit gegeven noemt men een veldstructuur.

!Veld = een verz is een veld 𝑉,∗,∘ als:
1) 𝑉,∗ is een commutatieve groep (met neutraal el n).
2) 𝑉 ∖ {𝑛},∘ is een commutatieve groep (met n het neutrale element v/d bewerking ∗).
3) ∘ is distributief t.o.v. ∗: Voor elke 𝑣, 𝑤, 𝑢 ∈ 𝑉 geldt er 𝑣 ∘ (𝑤 ∗ 𝑢) = (𝑣 ∘ 𝑤) ∗ (𝑣 ∘ 𝑢).

2.3 Complexe getallen
2.3.1 Constructie

Beschouw koppel (a,b) uit de productverz ℝ2 = ℝ × ℝ:
- De verz kan voorzien w v/d bewerking + : (𝑎1 , 𝑏1 ) + (𝑎2 , 𝑏2 ) = (𝑎1 + 𝑎2 , 𝑏1 + 𝑏2 ).
- De verz kan voorzien w v/d scalaire vermenigvuldiging: 𝜆(𝑎, 𝑏) = (𝜆𝑎, 𝜆𝑏).
- Om een veldstructuur op ℝ2 te definiëren kan de verz voorzien w v/d bewerking ℝ2 × ℝ2 → ℝ2 :
((𝑎1 , 𝑏1 ), (𝑎2 , 𝑏2 )) ⟼ (𝑎1 , 𝑏1 ) ⋅ (𝑎2 , 𝑏2 ) = (𝑎1 𝑎2 − 𝑏1 𝑏2 , 𝑎1 𝑏2 + 𝑎2 𝑏1 ).
➔ De bewerking voldoet aan alle eigenschappen:
• Neutraal el is (1,0).
• Symmetrisch el is (zie p15)
• Er w voldaan aan de distributiviteitswet (p16).

, ➔ De verz met de 2 bewerkingen is dus een veld.
➔ Dit veld is het complexe vlak ℂ met el genaamd complexe getallen.
➔ De verz van reële getallen is een deelverz van het complexe vlak.

Notatie:
- Reële getallen zijn een deelverz: {(𝑎, 0) |𝑎 ∈ ℝ}
- (0,1) = i
- (a,b) = a+bi
- i.i = -1 → 𝑖 2 = −1
- (0,b) = bi

a+bi = imaginair
{𝑏𝑖 = (0, 𝑏)|𝑏 ∈ ℝ} = de verz v/d zuiver imaginaire getallen → bi = zuiver imaginair
→ a is het reële deel en bi is het imaginaire deel v/h complex getal.

Gebruikelijke rekenregels w ook gebruikt voor complexe getallen:
- (𝑎1 + 𝑏1 𝑖) + (𝑎2 + 𝑏2 𝑖) = (𝑎1 + 𝑎2 ) + (𝑏1 + 𝑏2 )𝑖
- (𝑎1 + 𝑏1 𝑖) ⋅ (𝑎2 + 𝑏2 𝑖) = (𝑎1 𝑎2 − 𝑏1 𝑏2 ) + (𝑎1 𝑏2 + 𝑎2 𝑏1 )𝑖
1
Invers getal v/e complex getal = (𝑎 + 𝑏𝑖)−1 = 𝑎2 +𝑏2 (𝑎 − 𝑏𝑖)

➔ Het !toegevoegd complex getal van a+bi = ̅̅̅̅̅̅̅̅
𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖.
= het koppel dat symmetrisch ligt t.o.v. de X-as.

!!Wanneer we een complex getal met haar complex toegevoegde vermenigvuldigen is het resultaat
steeds een positief reëel getal: (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏 2 ≥ 0.

2.3.2 Polaire vorm

De getallen (𝑎, 𝑏) ∈ ℝ2 v/e punt i/h vlak w de cartesische coördinaten v/h punt genoemd.
Een andere voorstelling hiervoor zijn de poolcoördinaten (𝑟, 𝜑) v/h punt.
𝑎 = 𝑟 cos(𝜑)
→ Worden bepaald door {
𝑏 = 𝑟 sin(𝜑)
met 𝑟 ≥ 0 = de modulus en 0 ≤ 𝜑 < 2 = de poolhoek of het argument
→ 𝑎 + 𝑏𝑖 = 𝑟(cos( 𝜑) + sin(𝜑) 𝑖) = de goniometrische / polaire vorm
𝑟 = √𝑎2 + 𝑏 2
Handige uitdrukking:{ 𝑏
tan(𝜑) = 𝑎
Deze uitkomst zal 2 hoeken geven: zoek het kwadrant waarin de hoek ligt i/d goniometrische cirkel.

Meetkundige interpretatie v/d vermenigvuldiging:
𝑧1 𝑧2 = (𝑟1 (cos(𝜃1 ) + sin(𝜃1 ) 𝑖))(𝑟2 (cos(𝜃2 ) + 𝑠𝑖𝑛(𝜃2 )𝑖)) = 𝑟1 𝑟2 (cos(𝜃1 + 𝜃2 ) + sin (𝜃1 + 𝜃2 )𝑖)
!Formule van De Moivre =
Voor elke 𝑛 ∈ ℤ geldt: 〈𝑟(cos(𝜑) + sin (𝜑)𝑖)〉𝑛 = 𝑟 𝑛 (cos(𝑛𝜑) + sin(𝑛𝜑) 𝑖)
Bewijs 2.1.

2.4 ℝ𝑛 als verzameling van vectoren
Met ℝ𝑛 bedoelen we de verz van koppels {(𝑥1 , 𝑥2,⋯ , 𝑥𝑛 )|𝑥𝑖 ∈ ℝ, 𝑖 = 1, … , 𝑛}.
De elementen worden vaak vectoren genoemd en genoteerd als 𝑥⃗, 𝑦⃗, 𝑒𝑡𝑐 en ze zullen geïdentificeerd
worden met kolommatrices.
ℝ𝑛 , +is een groep, maar ℝ𝑛 × ℝ𝑛 → ℝ𝑛 is geen veld: er ontbreekt een 2e inwendige bewerking.
Een veel gebruikte grafische voorstelling is die waarbij de vectoren getekend w met pijlen.(p 22-24)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller hannedierckx. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.31. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78291 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling

Recently viewed by you


$6.31  1x  sold
  • (0)
  Add to cart