100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Zusammenfassung Periodische Vorgänge $3.25   Add to cart

Summary

Zusammenfassung Periodische Vorgänge

 24 views  0 purchase
  • Course
  • Institution

Periodische Vorgänge: Sinusfunktion, Kosinusfunktion(Eigenschaften)

Preview 1 out of 1  pages

  • January 26, 2022
  • 1
  • 2021/2022
  • Summary
  • Secondary school
  • Gymnasium
  • 1
avatar-seller
Periodiscneoorgéorge



Eine Function f heipst periodisch ,
wenn es mindesters eine Zant pgibt , sodass for alle reelten Zahler ✗
gilt :




f- (✗ + p) =
-11×1 .




Die KleinSte positive Zahl p Mit oieser EigerSchaff nennt man die Periodenlange von f.




sinusfunction und Kosmosfunction



Die sinusfunction ✗ >
sin / ✗ 1 und die closingfunction ✗ > cos 1×1 Sind periodisch .




Die periodenlarge betrégt 360°
..




Es gibt zu jeoem Winkel ✗ einen sinus -
und einen ltosinuswert .




For die Funktionswerte gilt :
-1€ sin (X) f- 1 und -
l ⇐ cos 1×1 € 1 .




EigenSchatten


1. -
beeide Graphen haben dieselbe Form

des Graphen der sinus function nach links / der lkosinosfunktion nach reents um 900
bei Uerscniebung
-




> beioe Graphen deckungsgleich
> costal =
sin (✗ + 904 und sin( ✗I =
cos /✗ -
909




2. -

Graph der sinusfonktion ist poncetsymmetrisch zum Nollpunkt

-

Graph der Kosinvsfunktion ist achsensyrnmetrisch zur y
-

Acnse

> sin 1- ☒I sin 1×1 und cost ✗I =
cos 1×1
-
= -




3. -

sin (180° -
✗ I =
sin (✗1 und cos 1180° -

✗I = -
cos 1×1

/




4 .
-
cos 1360° -
✗D= cos (✗I


-
sin 1360° -
✗I = -
sin 1×1

-




5. - zu jedem Winkel ✗ Kann man ein
rechtwinkliges Dreieck Mit der Hypotenuse 0Pa zeichnen ,




dessen ctatheten parallel zu den Uaooroioratenachsen sind



cos-11 / ✗a
=
cos ✗ =
. . .
. . .




-



Anwendung des satzes von Pythagoras :


immer
(X)
<
sin + cos21×1 =
1
✗z =
360° -

✗,

gilt for alle Winkel ✗




nach sin
-1
a
= 180° -

ist das erste
-




wenn sin 1×1 > 0 $ a, immer Ergebnis ,
.




erst er Winkel negatiu (nicht zwischen 0° und 3804 damn
:
a = 180° -

l ✗1 ! ygoo + ( ✗I
sin 1×1 < 0
-
=
>
-




Wenn ,



1. ✗
'
= sin
- "
l - - -
l ✗z = 360° + (
-

✗1
! 360° -
I ✗I

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller deindad. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.25. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62890 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.25
  • (0)
  Add to cart