100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting alles van vectorcalculus (krommen, velden en integralen) $5.89   Add to cart

Summary

Samenvatting alles van vectorcalculus (krommen, velden en integralen)

 40 views  0 purchase
  • Course
  • Institution

Samenvatting van alle leerstof die aan bod komt in de lessen van vectorcalculus. Alles van krommen, velden en lijnintegralen. Deeltje van oppervlakintegralen ontbreekt op een laatste foto uit Maple na . Probeer deze screenshot goed te bekijken je bent er heel veel mee op het examen

Last document update: 2 year ago

Preview 2 out of 8  pages

  • February 17, 2022
  • February 17, 2022
  • 8
  • 2021/2022
  • Summary
avatar-seller
Vectorcalculus
Velden
Divergentie : ⃗
∇∙ ⃗
F =ϕ nabla scalair vermenigvuldigen met Vectorveld levert een scalair veld
Laplaciaan: ⃗
∇∙ ⃗
∇ f =∆ f
Rotatie: ⃗
∇× ⃗
F =⃗
G waarbij een nieuw vectorveld gevormd wordt.
Rotatievrij: ⃗
∇× ⃗
F =0
Conservatief: een vectorveld is conservatief als en slechts als er een scalair veld bestaat waarvoor
geldt dat de ⃗
∇ f gelijk is aan het vectorveld ⃗
F

F is conservatief ⇔ ⃗
⃗ F ⇔⃗
∇ f =⃗ F =⃗
∇×⃗ ∇× ⃗
∇ f =0 ⟹ als ⃗
F conservatief is dan is ⃗
F rotatievrij

F is continu diff en rotatievrij∈een EVS ⟺ ⃗
F is conservatief
Solenoïdaal: een vectorveld is solenoïdaal als en slecht als er een vectorveld A bestaat waarvoor geld
dat de rotatie van A gelijk is aan vectorveld F. Deze A is op een gradiëntveld na bepaald.

F is solenoïdaal ⟹ ⃗
F is divergentievrij

F is divergentievrij∈een open interval omega⟹ ⃗
F is solenoïdaal

De divergentie van een rotatie is steeds gelijk aan 0 : ⃗
∇∙(⃗ F )=0
∇×⃗
De helmholtzontbinding van vectorvelden: een vectorveld kan als volgt ontbonden worden :
F =⃗
⃗ ∇ ϕ+ ⃗
∇×⃗ A waarbij ∆ ϕ=⃗ ∇⃗F en ⃗
∇∙⃗A=0
Rieszetstelsel: stelsel dat zoekt naar een divergentie-en rotatievrij vectorveld. Dit vectorveld moet
een gradiëntveld zijn van een harmonisch scalair veld want dan is dit vectorveld rotatievrij en
bovendien divergentievrij. De vectorpotetiaal (bestaat wegens divergentievrij) van ons vectorveld is
dan ook harmonisch (dit wordt bewezen door de rotatie van beide leden te nemen wanneer we de
solenoïdale vergelijking opschrijven)

, Lijnintegralen
3.1 lijnintegraal van een scalair veld

Onderstaande figuur schetst wat een Lijnintegraal over een scalair veld is. Het scalair veld f is een
scalair veld van 2 veranderlijken waardoor we het veld visueel kunnen voorstellen. De kromme C is
dan een kromme in het xy vlak. De punten die de kromme overloopt hebben allemaal een
functiewaarde in het scalair veld f. Als we nu de oppervlakte onder de kromme van de
functiewaarden van C nemen. Dan vinden we de lijnintegraal van C in f.

https://nl.wikipedia.org/wiki/Lijnintegraal#/media/Bestand:Line_integral_of_scalar_field.gif

De meeste lijnintegralen die wij bekijken zijn echter in 3D waardoor de kromme c een parameterVGL
heeft van 3 veranderlijken (Dus C kunnen we in principe nog visueel voorstellen). De desbetreffende
functiewaarde van de punten van C in ϕ daarentegen kunnen we niet visueel voorstellen want
hiervoor hebben we nood aan een 4de dim.

Kort samengevat:

 ϕ is een scalair veld in R3  met elke punt van de ruimte komt een functiewaarde overeen
BV: Temp
 C is een kromme met een parameterVGL in 3 veranderlijken MAW een kromme in de ruimte
bv koord
 Een lijnintegraal van ϕ over c is dus de som van de functiewaarden van c in ϕ




Bovenstaande vergelijking is de definitie van een lijnintegraal. Waarbij P(t) een parametervoorstelling
is van C vb:



{
x=t
y= y 0 +2 ⋅t
z=0


3.2 Lijnintegraal van een vectorveld

Een lijnintegraal van een vectorveld visueel voorstellen is volstrekt onmogelijk hiervoor zouden we
de volle 6 dimensies nodig hebben. 3 voor de punten van de ruimte waarin de kromme C ligt zoals bij
de lijnintegralen van een scalair veld. Het grote verschil zit hem in de waarden die men krijgt uit het
veld F(vectorveld) dit zijn vectoren IPV scalaire waarden. Ook hiervoor bestaat een definitie die we
moeten aannemen:

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Pietverstraete. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.89. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

70055 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.89
  • (0)
  Add to cart