6 fiches de quantique partie 2 du semestre 2 de licence 3 avec tout l’essentiel du cour
-matrice
-oscillateur harmonique
-heisenberg
Equation de Schrodinger
-postulats
- Erhenfest
- Operateurs
-moment angulaire et cinetique
-spin
-cas helium
-theroreme perturbation
C est normale si ctc.cc
" + AK
été ? et
si [Ati , Ata ) → -
C est
diagonale si c = et
matrice
si on a une
diagonale -
ZEB A) ,
= CA BJ ,
-
ELA B) ,
( d'oda f) è=ÇEÎ
•
D=
.
→ Ca > = THANI [FX ) = - if
( HIT )
.
0
.
=
M
( "
é=Êo÷( Ida ? .in/--EdnEqI..0
d'
fonction d' onde
°
""
;)
=
ans
=
÷ ? ed ! ed? .edu
Mn )
-
XSLX -
x
'
)
det
Scrtlxxxvîlxixxlx > di
-
e . =
D
du et -
edit dzt . . . =
ÎY M"
f
=
*
= Y dx
Si on ne sait pas A
diagonale ,
on
suppose diagonalisable :
peut DU
Equation de Schio diriger
-
dégénérescence oscillateur harmonique
matrices
flow ( ya g.) Qly
A
,
B et c Holy ) = -
) =
Elly )
on pose N =3 et [Ai B) toi AU "
opérateur annihilation et création :
Al XD a. 121 )
[B. c) +0
commutateur
=
AI XD =
azl XD
a =
#(à + i F)
Ca at ] 1
az 1737 at
=
AIT 3)
( à .jp )
,
#
=
±
px > rect a Val
=
p
=
p
d' onde
.
paquet ( démo )
.
non
dégénéré : ai # as # az
Par def if
day À [H ÂI
-
: =
,
Ex
dégénéré :
ai az = a
3
¥ Eh CUÀY
=
donc xz =
si CA B) 0 LA et
Bdiagau À
temps ) le II =fÊm+V IM
=
,
avec , ,
BA tais Bailli ) B
ai
[ptn II ] #4=X¥miDËmÀ
=
=
"
=
,
rect .
p 0
Si ai pas dégénéré : B = bilais =
xfnpcp ,
x ) +
Imp ( p.MX ihmlxpxpx ) =
-
si les vol
p
de A pas dég alors [ BRI 0
¥ 4×2 > 1mL xp
=
→
px >
. .
=
+
, Courant de probabilité Eq Schio
diriger
'
de
Jlnttifml dd 4-
datant) Hat ) = Hallett )
it
f- Et En ¥ datait
-
=
→
Inégalité de
heisenberg
OALIB >
f- IL [A B) Il
,
eq temporelle :
daf pQ
=
Frouez ih
[xp ) = A
→ alt ) =
e-
¥ spatiale En ddInrt-VH.EU£ Kitty =
eq :
-
générateur infinitésimal Eq indépendante du temps :
ËÆ a
Ula ) =
Ilya -
=
EU
ce ICX INH KUMI valeur HE
=
arc
propre Eo =
= XCXIHY
aux) fonction de thermite
e-¥ Un ly )
=
# ann ! ) t
-
→ XIU > = xht > Qnly ) =
IyYè¥
t'"
e-
polynome
~
:
Hnlytly
-
Qp ( x ) = < xlp>
~
< xllplp » =
pcxlp >
Paquet d' onde
(a) PQptn)
eilkn-wlktttdk-sclp.at#e-iEn
=p Qp
=
Mut ) =
¥ folk )
= -
ihfzq.cn ) ,
Uk) donne la forme du paquet
÷
5¥ Qptslp ) Etats liés et états de diffusion
'
p
-
÷
puits ,
oscillateur harmonique ,
transformé de fourier particule libre
Îlp ) < plus = =
TFK nm) EC ( VL a) et Kto ) )
-
= état lié
¥
"
Mn) =
le Ntp) dp ESCH -
o ) et Vlto ) ) =
diffusion
( MQ barrière surmonté par effet
:
tunnel )
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller lauranardelli. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $16.71. You're not tied to anything after your purchase.