100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Exam (elaborations)

solutions_manual_engineering_electromagnetics_by_hayt_8th_edition

Rating
-
Sold
-
Pages
259
Grade
A+
Uploaded on
09-03-2022
Written in
2021/2022

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find: a) a unit vector in the direction of −M + 2N. −M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4) Thus a = (26, 10, 4) |(26, 10, 4)| = (0.92, 0.36, 0.14) b) the magnitude of 5ax + N − 3M: (5, 0, 0) + (8, 7, −2) − (−30, 12, −24) = (43, −5, 22), and |(43, −5, 22)| = 48.6. c) |M||2N|(M + N): |(−10, 4, −8)||(16, 14, −4)|(−2, 11, −10) = (13.4)(21.6)(−2, 11, −10) = (−580.5, 3193, −2902) 1.2. Given three points, A(4, 3, 2), B(−2, 0, 5), and C(7, −2, 1): a) Specify the vector A extending from the origin to the point A. A = (4, 3, 2) = 4ax + 3ay + 2az b) Give a unit vector extending from the origin to the midpoint of line AB. The vector from the origin to the midpoint is given by M = (1/2)(A + B) = (1/2)(4 − 2, 3 + 0, 2 + 5) = (1, 1.5, 3.5) The unit vector will be m = (1, 1.5, 3.5) |(1, 1.5, 3.5)| = (0.25, 0.38, 0.89) c) Calculate the length of the perimeter of triangle ABC: Begin with AB = (−6, −3, 3), BC = (9, −2, −4), CA = (3, −5, −1). Then |AB|+|BC|+|CA| = 7.35 + 10.05 + 5.91 = 23.32 1.3. The vector from the origin to the point A is given as (6, −2, −4), and the unit vector directed from the origin toward point B is (2, −2, 1)/3. If points A and B are ten units apart, find the coordinates of point B. With A = (6, −2, −4) and B = 1 3 B(2, −2, 1), we use the fact that |B − A| = 10, or |(6 − 2 3 B)ax − (2 − 2 3 B)ay − (4 + 1 3 B)az| = 10 Expanding, obtain 36 − 8B + 4 9 B 2 + 4 − 8 3 B + 4 9 B 2 + 16 + 8 3 B + 1 9 B 2 = 100 or B 2 − 8B − 44 = 0. Thus B = 8± √ 64−176 2 = 11.75 (taking positive option) and so B = 2 3 (11.75)ax − 2 3 (11.75)ay + 1 3 (11.75)az = 7.83ax − 7.83ay + 3.92az 1 SOLUTION MANUAL ENGINEERING ELECTROMAGNETICS BY WILLIAM H. HAYT 8TH EDITION COMPLETE CHAPTERS 1.4. given points A(8, −5, 4) and B(−2, 3, 2), find: a) the distance from A to B. |B − A|=|(−10, 8, −2)| = 12.96 b) a unit vector directed from A towards B. This is found through aAB = B − A |B − A| = (−0.77, 0.62, −0.15) c) a unit vector directed from the origin to the midpoint of the line AB. a0M = (A + B)/2 |(A + B)/2| = (3, −1, 3) √ 19 = (0.69, −0.23, 0.69) d) the coordinates of the point on the line connecting A to B at which the line intersects the plane z = 3. Note that the midpoint, (3, −1, 3), as determined from part c happens to have z coordinate of 3. This is the point we are looking for. 1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z 2az. Given two points, P(1, 2, −1) and Q(−2, 1, 3), find: a) G at P: G(1, 2, −1) = (48, 36, 18) b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so aG = (−48, 72, 162) |(−48, 72, 162)| = (−0.26, 0.39, 0.88) c) a unit vector directed from Q toward P: aQP = P − Q |P − Q| = (3, −1, 4) √ 26 = (0.59, 0.20, −0.78) d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z 2 )|, or 10 = |(4xy, 2x 2 + 4, 3z 2 )|, so the equation is 100 = 16x 2 y 2 + 4x 4 + 16x 2 + 16 + 9z 4 2 1.6. For the G field in Problem 1.5, make sketches of Gx , Gy , Gz and |G| along the line y = 1, z = 1, for 0 ≤ x ≤ 2. We find G(x, 1, 1) = (24x, 12x 2 + 24, 18), from which Gx = 24x, Gy = 12x 2 + 24, Gz = 18, and |G| = 6 √ 4x 4 + 32x 2 + 25. Plots are shown below. 1.7. Given the vector field E = 4zy2 cos 2xax + 2zy sin 2xay + y 2 sin 2xaz for the region |x|, |y|, and |z| less than 2, find: a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0, with |x| 2, |y| 2; 2) the plane y = 0, with |x| 2, |z| 2; 3) the plane x = 0, with |y| 2, |z| 2; 4) the plane x = π/2, with |y| 2, |z| 2. b) the region in which Ey = Ez: This occurs when 2zy sin 2x = y 2 sin 2x, or on the plane 2z = y, with |x| 2, |y| 2, |z| 1. c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy2 cos 2x = zy sin 2x = y 2 sin 2x = 0. This condition is met on the plane y = 0, with |x| 2, |z| 2. 1.8. Two vector fields are F = −10ax +20x(y −1)ay and G = 2x 2yax −4ay +zaz. For the point P(2, 3, −4), find: a) |F|: F at (2, 3, −4) = (−10, 80, 0), so |F| = 80.6. b) |G|: G at (2, 3, −4) = (24, −4, −4), so |G| = 24.7. c) a unit vector in the direction of F − G: F − G = (−10, 80, 0) − (24, −4, −4) = (−34, 84, 4). So a = F − G |F − G| = (−34, 84, 4) 90.7 = (−0.37, 0.92, 0.04) d) a unit vector in the direction of F + G: F + G = (−10, 80, 0) + (24, −4, −4) = (14, 76, −4). So a = F + G |F + G| = (14, 76, −4) 77.4 = (0.18, 0.98, −0.05) 3 1.9. A field is given as G = 25 (x2 + y 2 ) (xax + yay ) Find: a) a unit vector in the direction of G at P(3, 4, −2): Have Gp = 25/(9 + 16) × (3, 4, 0) = 3ax + 4ay , and |Gp| = 5. Thus aG = (0.6, 0.8, 0). b) the angle between G and ax at P: The angle is found through aG · ax = cos θ. So cos θ = (0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦ . c) the value of the following double integral on the plane y = 7:  4 0  2 0 G · ay dzdx  4 0  2 0 25 x 2 + y 2 (xax + yay ) · ay dzdx =  4 0  2 0 25 x 2 + 49 × 7 dzdx =  4 0 350 x 2 + 49 dx = 350 × 1 7 tan−1 4 7  − 0  = 26 1.10. Use the definition of the dot product to find the interior angles at A and B of the triangle defined by the three points A(1, 3, −2), B(−2, 4, 5), and C(0, −2, 1): a) Use RAB = (−3, 1, 7) and RAC = (−1, −5, 3) to form RAB · RAC = |RAB||RAC| cos θA. Obtain 3 + 5 + 21 = √ 59√ 35 cos θA. Solve to find θA = 65.3 ◦ . b) Use RBA = (3, −1, −7) and RBC = (2, −6, −4) to form RBA · RBC = |RBA||RBC| cos θB. Obtain 6 + 6 + 28 = √ 59√ 56 cos θB. Solve to find θB = 45.9 ◦ . 1.11. Given the points M(0.1, −0.2, −0.1), N(−0.2, 0.1, 0.3), and P(0.4, 0, 0.1), find: a) the vector RMN : RMN = (−0.2, 0.1, 0.3) − (0.1, −0.2, −0.1) = (−0.3, 0.3, 0.4). b) the dot product RMN · RMP : RMP = (0.4, 0, 0.1) − (0.1, −0.2, −0.1) = (0.3, 0.2, 0.2). RMN · RMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05. c) the scalar projection of RMN on RMP : RMN · aRMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) √ 0.09 + 0.04 + 0.04 = 0.05 √ 0.17 = 0.12 d) the angle between RMN and RMP : θM = cos−1 RMN · RMP |RMN ||RMP |  = cos−1 0.05 √ 0.34√ 0.17 = 78◦ 4

Show more Read less
Institution
Course

Content preview

Your text here 1
SOLUTION MANUAL ENGINEERING ELECTROMAGNETICS BY WILLIAM H. HAYT 8TH
EDITION COMPLETE CHAPTERS

CHAPTER 1

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az , find:
a) a unit vector in the direction of −M + 2N.
−M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)
Thus
(26, 10, 4)
a= = (0.92, 0.36, 0.14)
|(26, 10, 4)|

b) the magnitude of 5ax + N − 3M:
(5, 0, 0) + (8, 7, −2) − (−30, 12, −24) = (43, −5, 22), and |(43, −5, 22)| = 48.6.
c) |M||2N|(M + N):
|(−10, 4, −8)||(16, 14, −4)|(−2, 11, −10) = (13.4)(21.6)(−2, 11, −10)
= (−580.5, 3193, −2902)

1.2. Given three points, A(4, 3, 2), B(−2, 0, 5), and C(7, −2, 1):
a) Specify the vector A extending from the origin to the point A.

A = (4, 3, 2) = 4ax + 3ay + 2az

b) Give a unit vector extending from the origin to the midpoint of line AB.
The vector from the origin to the midpoint is given by
M = (1/2)(A + B) = (1/2)(4 − 2, 3 + 0, 2 + 5) = (1, 1.5, 3.5)
The unit vector will be
(1, 1.5, 3.5)
m= = (0.25, 0.38, 0.89)
|(1, 1.5, 3.5)|
c) Calculate the length of the perimeter of triangle ABC:
Begin with AB = (−6, −3, 3), BC = (9, −2, −4), CA = (3, −5, −1).
Then

|AB| + |BC| + |CA| = 7.35 + 10.05 + 5.91 = 23.32


1.3. The vector from the origin to the point A is given as (6, −2, −4), and the unit vector directed from the
origin toward point B is (2, −2, 1)/3. If points A and B are ten units apart, find the coordinates of point
B.
With A = (6, −2, −4) and B = 13 B(2, −2, 1), we use the fact that |B − A| = 10, or
|(6 − 23 B)ax − (2 − 23 B)ay − (4 + 13 B)az | = 10
Expanding, obtain
36 − 8B + 49 B 2 + 4 − 38 B + 49 B 2 + 16 + 83 B + 19 B 2 = 100

8± 64−176
or B 2 − 8B − 44 = 0. Thus B = 2 = 11.75 (taking positive option) and so
2 2 1
B= (11.75)ax − (11.75)ay + (11.75)az = 7.83ax − 7.83ay + 3.92az
3 3 3
1

,1.4. given points A(8, −5, 4) and B(−2, 3, 2), find:
a) the distance from A to B.

|B − A| = |(−10, 8, −2)| = 12.96

b) a unit vector directed from A towards B. This is found through
B−A
aAB = = (−0.77, 0.62, −0.15)
|B − A|
c) a unit vector directed from the origin to the midpoint of the line AB.

(A + B)/2 (3, −1, 3)
a0M = = √ = (0.69, −0.23, 0.69)
|(A + B)/2| 19

d) the coordinates of the point on the line connecting A to B at which the line intersects the plane z = 3.
Note that the midpoint, (3, −1, 3), as determined from part c happens to have z coordinate of 3. This
is the point we are looking for.

1.5. A vector field is specified as G = 24xyax + 12(x 2 + 2)ay + 18z2 az . Given two points, P (1, 2, −1) and
Q(−2, 1, 3), find:
a) G at P : G(1, 2, −1) = (48, 36, 18)
b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so

(−48, 72, 162)
aG = = (−0.26, 0.39, 0.88)
|(−48, 72, 162)|

c) a unit vector directed from Q toward P :

P−Q (3, −1, 4)
aQP = = √ = (0.59, 0.20, −0.78)
|P − Q| 26

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x 2 + 2), 18z2 )|, or
10 = |(4xy, 2x 2 + 4, 3z2 )|, so the equation is

100 = 16x 2 y 2 + 4x 4 + 16x 2 + 16 + 9z4




2

,1.6. For the G field in Problem 1.5, make sketches of Gx , Gy , Gz and |G| along the line y = 1, z = 1, for
0 ≤ x ≤ 2. We find√ G(x, 1, 1) = (24x, 12x 2 + 24, 18), from which Gx = 24x, Gy = 12x 2 + 24,
Gz = 18, and |G| = 6 4x 4 + 32x 2 + 25. Plots are shown below.




1.7. Given the vector field E = 4zy 2 cos 2xax + 2zy sin 2xay + y 2 sin 2xaz for the region |x|, |y|, and |z| less
than 2, find:
a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0, with
|x| < 2, |y| < 2; 2) the plane y = 0, with |x| < 2, |z| < 2; 3) the plane x = 0, with |y| < 2, |z| < 2;
4) the plane x = π/2, with |y| < 2, |z| < 2.
b) the region in which Ey = Ez : This occurs when 2zy sin 2x = y 2 sin 2x, or on the plane 2z = y, with
|x| < 2, |y| < 2, |z| < 1.
c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy 2 cos 2x = zy sin 2x =
y 2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.

1.8. Two vector fields are F = −10ax + 20x(y − 1)ay and G = 2x 2 yax − 4ay + zaz . For the point P (2, 3, −4),
find:
a) |F|: F at (2, 3, −4) = (−10, 80, 0), so |F| = 80.6.
b) |G|: G at (2, 3, −4) = (24, −4, −4), so |G| = 24.7.
c) a unit vector in the direction of F − G: F − G = (−10, 80, 0) − (24, −4, −4) = (−34, 84, 4). So

F−G (−34, 84, 4)
a= = = (−0.37, 0.92, 0.04)
|F − G| 90.7

d) a unit vector in the direction of F + G: F + G = (−10, 80, 0) + (24, −4, −4) = (14, 76, −4). So

F+G (14, 76, −4)
a= = = (0.18, 0.98, −0.05)
|F + G| 77.4

3

, 1.9. A field is given as
25
G= (xax + yay )
(x 2 + y2)
Find:
a) a unit vector in the direction of G at P (3, 4, −2): Have Gp = 25/(9 + 16) × (3, 4, 0) = 3ax + 4ay ,
and |Gp | = 5. Thus aG = (0.6, 0.8, 0).
b) the angle between G and ax at P : The angle is found through aG · ax = cos θ . So cos θ =
(0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦ .
c) the value of the following double integral on the plane y = 7:
 4 2
G · ay dzdx
0 0
 4 2 25
 4 2
25
 4
350
(xax + ya y ) · a y dzdx = × 7 dzdx = dx
0 0 x2 + y2 0 0 x 2 + 49
0 x 2 + 49
   
1 −1 4
= 350 × tan − 0 = 26
7 7


1.10. Use the definition of the dot product to find the interior angles at A and B of the triangle defined by the
three points A(1, 3, −2), B(−2, 4, 5), and C(0, −2, 1):
a) Use RAB = (−3, √ 1, √7) and RAC = (−1, −5, 3) to form RAB · RAC = |RAB ||RAC | cos θA . Obtain
3 + 5 + 21 = 59 35 cos θA . Solve to find θA = 65.3◦ .
b) Use RBA = (3,√−1,√−7) and RBC = (2, −6, −4) to form RBA · RBC = |RBA ||RBC | cos θB . Obtain
6 + 6 + 28 = 59 56 cos θB . Solve to find θB = 45.9◦ .


1.11. Given the points M(0.1, −0.2, −0.1), N(−0.2, 0.1, 0.3), and P (0.4, 0, 0.1), find:
a) the vector RMN : RMN = (−0.2, 0.1, 0.3) − (0.1, −0.2, −0.1) = (−0.3, 0.3, 0.4).
b) the dot product RMN · RMP : RMP = (0.4, 0, 0.1) − (0.1, −0.2, −0.1) = (0.3, 0.2, 0.2). RMN ·
RMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05.
c) the scalar projection of RMN on RMP :

(0.3, 0.2, 0.2) 0.05
RMN · aRMP = (−0.3, 0.3, 0.4) · √ =√ = 0.12
0.09 + 0.04 + 0.04 0.17

d) the angle between RMN and RMP :
   
−1 RMN · RMP −1 0.05
θM = cos = cos √ √ = 78◦
|RMN ||RMP | 0.34 0.17




4

Written for

Course

Document information

Uploaded on
March 9, 2022
Number of pages
259
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
EvaTee Phoenix University
Follow You need to be logged in order to follow users or courses
Sold
5054
Member since
4 year
Number of followers
3560
Documents
53008
Last sold
1 day ago
TIGHT DEADLINE? I CAN HELP

Many students don\'t have the time to work on their academic papers due to balancing with other responsibilities, for example, part-time work. I can relate. kindly don\'t hesitate to contact me, my study guides, notes and exams or test banks, are 100% graded

3.8

926 reviews

5
442
4
162
3
169
2
47
1
106

Trending documents

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions