100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Relación de ejercicios resueltos 2 $5.93   Add to cart

Class notes

Relación de ejercicios resueltos 2

 0 view  0 purchase
  • Course
  • Institution

Apuntes con las soluciones

Preview 2 out of 6  pages

  • March 14, 2022
  • 6
  • 2022/2023
  • Class notes
  • Paca
  • All classes
avatar-seller
Tema: Integrales múltiples Ejercicios resueltos

Z 1 Z 1
1. Calcular: ey dxdy
0 1−y
Respuesta.
Z 1Z 1 "Z x=1
#
1 Z 1
ey dxdy = y
xe dy = yey dy
0 1−y 0 x=1−y 0


[usando integración por partes, se obtiene:]

1
= (yey − ey ) =1
0

Z 3 Z 4−y
3
2. Dada la integral iterada I= e12x−x dxdy.
0 1
Expresar la integral, cambiando el orden de integración, y calcular su valor.
Respuesta.

a) El dominio de integración está dado por:
 √
1≤x≤ 4−y
D:
0≤y≤3

b) El dominio
√ D, está limitado por las rectas y = 0, y = 3, x = 1 y la gráfica
x = 4 − y, representado gráficamente en la siguiente figura:




Dominio D


c) El dominio D también se puede describir:

1≤x≤2
D:
0 ≤ y ≤ 4 − x2

Instituto de Matemática y Fı́sica 17 Universidad de Talca

, Tema: Integrales múltiples Ejercicios resueltos

Z 2 Z 4−x2
3
Por lo tanto: I= e12x−x dydx.
1 0
d ) Para calcular I usaremos su expresión anterior. Luego
Z 2 Z 4−x2
3
I = e12x−x dydx
1 0

Z 2 
y=4−x2

(12x−x3 )
= ye dx
1 y=0


3 2
2
e12x−x e11 5
Z  
2 12x−x3
= (4 − x )e dx = = (e − 1) ≈ 2942078,792
1 3 3
1

y
3. Sea z = f (x, y) = definida sobre el cuadrado unitario R = [1, 2] × [0, 1].
x
ZZ
a) Calcular un valor aproximado de f (x, y)dxdy mediante la suma de Riemann de
R
f , considerando una partición de la región en 9 subcuadrados congruentes, y en
cada subcuadrado se elige el vértice inferior izquierdo.
ZZ
b) El valor de f (x, y)dxdy, usando integrales iteradas.
R
Respuesta.
1
a) 1) Se tiene que: ∆x = = ∆y
3
En [1, 2] se considera la partición: 1, 34 , 53 , 2, determinando los siguientes
subintervalos:      
4 4 5 5
1, , , , ,2
3 3 3 3
En [0, 1] se considera la partición: 0, 31 , 23 , 1, determinando los siguientes
subintervalos:      
1 1 2 2
0, , , , ,1
3 3 3 3
1 1
2) Cada subcuadrado tiene un área igual a ∆A = 3
· 3
= 19 .




Instituto de Matemática y Fı́sica 18 Universidad de Talca

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller antoniomuozsnchez. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.93. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.93
  • (0)
  Add to cart