Summary of the Lectures of Statistics 2 - 2021/2022 + Additional Summary of the homework module
2 purchases
Course
Statistics 2 (NWIBB093)
Institution
Radboud Universiteit Nijmegen (RU)
A complete summary with notes of the Statistics 2 lectures from 2021/2022 given by Peter Klaren. There is an additional summary of the online e-learning module "Systematic Reviews of Animal Studies" that was mandatory homework for one of the guest lectures.
,Table of Content
1. Lecture - Introduction ......................................................................................................................... 4
1.1 Example I ....................................................................................................................................... 5
1.1.1 Pregnancy outcomes in a study group exposed to cetirizine and a control group ............... 5
1.1.2 How do you look at the data? ................................................................................................ 5
1.1.3 How would you analyse the data? ......................................................................................... 5
1.2 Recapitulation: .............................................................................................................................. 6
1.2.1 Variables: Independent vs. dependent, qualitative vs. quantitative and choice of
statistical tests ................................................................................................................................ 6
1.2.2 Which tests? Analysing differences between sample with one independent variable. ....... 6
1.3 Back to the Example I .................................................................................................................... 6
1.3.1 Analysis of the cetirizine data using a 2 -test of Independence in JASP 0.16 ..................... 6
1.3.2 Analysis and interpretation of the cetirizine data ................................................................. 7
1.4 Example II ...................................................................................................................................... 8
1.4.1 Analysis of the amygdala data using linear regression in JASP 0.16 ...................................... 8
1.5 Why all this stuff about different choices in statistical analysis? ................................................. 9
1.6 Additional Notes ......................................................................................................................... 10
2. Lecture .............................................................................................................................................. 11
2.1 Sex/ Gender Bias ......................................................................................................................... 11
2.2 Factorial Experimental Designs ................................................................................................... 11
2.2.1 Looking for interactions between factors ............................................................................ 11
2.2.2. Analysing factorial experimental designs using contrasts .................................................. 18
2.3 Bottom lines ................................................................................................................................ 21
3. Lecture – Multiple Linear Regression (Spurious relationships, model selection) ............................. 22
3.1 Example “How to win a Nobel Prize” .......................................................................................... 22
3.1.1 Flavonols .............................................................................................................................. 22
3.1.2 Eat chocolate! ...................................................................................................................... 22
...................................................................................................................................................... 22
...................................................................................................................................................... 22
3.1.3 Eat chocolate? ...................................................................................................................... 22
3.1.4 Some context: Nobel laureates by country. ........................................................................ 22
3.1.5 A matter of national development? .................................................................................... 23
3.2 Recap Statistics 1 ........................................................................................................................ 23
3.2.1 A straight line: ...................................................................................................................... 23
3.2.2 Overview of linear regression calculations on a calibration curve: ..................................... 23
1
, 3.2.3 In multiple regression we will try to fit a best fitting hyperplane in more than two
dimensions (1DV, ≥ 2 IVs)............................................................................................................. 24
3.3 Why multiple linear regression? ................................................................................................. 24
3.4 Watch out for: ............................................................................................................................. 24
3.4.1 Simplification by dichotomization ....................................................................................... 24
3.4.2 Model abuse and spurious correlations & correlation =/ causation ................................... 27
3.4.3 The Simpson Paradox – an extreme example of a confounding variable............................ 32
3.5 Bottom lines: ............................................................................................................................... 34
4. Lecture – Power Analysis and Sample Size Calculation .................................................................... 35
4.1 Power Analysis ............................................................................................................................ 35
4.1.1 Biomedical research’s replication crisis ............................................................................... 35
4.2 Sample Size (n) determination .................................................................................................... 37
4.2.1 Example ................................................................................................................................ 37
4.2.2 The power of a statistical test indicates the sensitivity of a test to detect an effect when
there is one. .................................................................................................................................. 39
4.2.3 B – E – A – N – S (more on this later) ................................................................................... 39
4.2.4 How sample size, variability, and significance level affect power of a statistical analysis. 40
4.2.5 How many times will your test give a significant outcome when there is no difference
between groups? .......................................................................................................................... 40
4.2.6 Example – Biological Variation ............................................................................................. 41
4.2 ..................................................................................................................................................... 44
4.2.1 B – E – A – N – S.................................................................................................................... 44
4.2.2 Randomization and Stratification ........................................................................................ 48
4.3 Sample size calculations and power analyses using G*Power ................................................... 48
4.3.1 The bottom line when it comes to sample size: .................................................................. 49
4.3.2 Size does matter! ................................................................................................................. 49
4.3.3 Rule of thumb assuming a normal distribution ................................................................... 49
4.3.4 Formal calculation using the t-distribution .......................................................................... 50
4.3.5 Six approaches to justify sample sizes ................................................................................. 50
4.3.6 Six possible ways to think about effect size ......................................................................... 51
1. Guest Lecture – Dokter Media .......................................................................................................... 52
2. Guest Lecture – Syrcle....................................................................................................................... 54
2.1 Introduction to systematic reviews on animal studies ............................................................... 54
2.1.1 Steps of a systematic review ................................................................................................ 54
2.1.2 Benefits of preclinical SRs .................................................................................................... 54
2.1.3 Study Quality ........................................................................................................................ 55
2
, 2.1.4 Forest Plot ............................................................................................................................ 55
2.1.5 Subgroup Analysis ................................................................................................................ 56
2.1.6 Tools per phase .................................................................................................................... 56
2.2 Practical Data Extraction ............................................................................................................. 57
2.2.1 Types of outcome measures ................................................................................................ 57
2.2.2 Assignment – extracting outcome data ............................................................................... 57
2.2.3 Take Home Message ............................................................................................................ 59
2.3 Data-analysis and Meta-analysis................................................................................................. 60
2.3.1 Data-analysis or meta-analysis ............................................................................................ 60
2.3.2 Meta-analysis ........................................................................................................................... 60
2.3.3 From study data to forest plot ............................................................................................. 60
2.3.4 Choosing your effect size measure. continuous data .......................................................... 60
2.3.5 Continuous Data: MD vs. SD ................................................................................................ 61
2.3.6 Combining data – fixed vs. random effects ......................................................................... 61
2.3.7 Calculating the summary effect size .................................................................................... 62
2.3.8 Heterogeneity ...................................................................................................................... 62
2.3.9 Take Home Message ............................................................................................................ 63
2.4 Meta-analysis .............................................................................................................................. 64
2.4.1 Assessing publication bias: funnel plot ................................................................................ 64
5. Lecture – Bayesian inference ............................................................................................................ 66
5.1 Differences between classical frequentists and Bayesian statistical reasoning ......................... 66
5.1.2 Analysis of the cetirizine data. ............................................................................................. 66
5.1.2 Thomas Bayes (1701? – 1761) ............................................................................................. 68
5.2 Example ....................................................................................................................................... 68
5.2.1 Bayesian logic in interpreting laboratory tests. ................................................................... 68
5.2.2 Probability: sets and Venn diagrams. .................................................................................. 71
5.2.3 What is the probability that patient A carries the disease? Bayes’ theorem. .................... 72
5.3 p (A|B) ≠ p (B|A) ......................................................................................................................... 73
5.3.1 An example data set: Data from students in a statistics course, 2010-2011 ...................... 73
5.4 Bottom Lines ............................................................................................................................... 79
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller pattylamker. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.89. You're not tied to anything after your purchase.