100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Linear Algebra for EOR 21/22 (University of Groningen, EBP037A05) $5.33
Add to cart

Summary

Summary Linear Algebra for EOR 21/22 (University of Groningen, EBP037A05)

1 review
 207 views  5 purchases
  • Course
  • Institution

This document is a summary of all lecture slides provided by Stefan Pichler during the 2021/2022 course Linear Algebra. The course is part of the first year of the Econometrics and Operations Research program at the Rijksuniversiteit Groningen.

Preview 3 out of 23  pages

  • March 25, 2022
  • 23
  • 2021/2022
  • Summary

1  review

review-writer-avatar

By: npostma2003 • 2 year ago

avatar-seller
Linear Algebra Summary
Econometrics and Operations Research 2021/2022

,Table of Contents
Week 1..................................................................................................................................................... 3
Eigenvectors and Eigenvalues ............................................................................................................. 3
Diagonalizable Matrices ...................................................................................................................... 3
Difference Equations ........................................................................................................................... 3
Nondiagonalizable Matrices ................................................................................................................ 4
Jordan Normal Forms .......................................................................................................................... 4
Complex Eigenvalues and Eigenvectors .............................................................................................. 5
Week 2..................................................................................................................................................... 6
Markov Processes................................................................................................................................ 6
Symmetric Matrices ............................................................................................................................ 6
Quadratic Forms .................................................................................................................................. 7
Differential Equations.......................................................................................................................... 7
Solutions of First Order ODEs .............................................................................................................. 8
Solutions of Inhomogeneous Linear ODEs .......................................................................................... 8
Week 3..................................................................................................................................................... 9
Second Order Linear ODEs .................................................................................................................. 9
Direction Fields .................................................................................................................................. 10
Phase Portraits .................................................................................................................................. 10
Systems of Differential Equations ..................................................................................................... 11
Linear Systems of ODEs ..................................................................................................................... 12
Week 4................................................................................................................................................... 13
Stability Properties of Equilibrium Solutions..................................................................................... 13
Phase Portraits .................................................................................................................................. 14
Determinants and their Properties ................................................................................................... 15
The Inverse of a Matrix...................................................................................................................... 16
Cramer’s Rule .................................................................................................................................... 17
Week 5................................................................................................................................................... 18
Linear Spaces and Linear Subspaces ................................................................................................. 18
Bases and Dimension of a Linear Space ............................................................................................ 18
Row Spaces ........................................................................................................................................ 19
Column Spaces .................................................................................................................................. 19
Solving Systems of Linear Equations ................................................................................................. 20
Week 6................................................................................................................................................... 21
Null Spaces ........................................................................................................................................ 21
Affine Subspaces ............................................................................................................................... 22
Linear Basis Transformations ............................................................................................................ 22




2

, Week 1
Eigenvectors and Eigenvalues
- Canonical basis vectors in ℝ𝑛 :
1 0 0
0 1 0
- 𝑒1 = ( ) , 𝑒2 = ( ),…, 𝑒1 = ( ).
⋮ ⋮ ⋮
0 0 1
- Identity matrix in 𝑅 𝑛×𝑛 :
1 0 ⋯ 0
0 1 ⋯ 0
- 𝐼𝑛 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 1
- An eigenvalue of a square matrix 𝐴 is a number 𝜆 ∈ ℂ such that the matrix 𝐴 − 𝜆𝐼𝑛 is
singular.
- The number 𝜆 ∈ ℂ is an eigenvalue of 𝐴 iff det(𝐴 − 𝜆𝐼) = 0. This is the characteristic
equation of matrix 𝐴.
- The trace of a square matrix 𝐴 is the sum of its diagonal entries.
▪ 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = trace(𝐴).
▪ 𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑛 = det(𝐴).
- A vector 𝑣 ≠ 0 such that (𝐴 − 𝜆𝐼)𝑣 = 0 for some eigenvalue 𝜆 of 𝐴 is called an eigenvector
of 𝐴 corresponding to 𝜆.
- Note that: (𝐴 − 𝜆𝐼)𝑣 = 0 ⇔ 𝐴𝑣 = 𝜆𝑣.

Diagonalizable Matrices
- Let 𝐴 be a square matrix and let 𝜆1 , … , 𝜆2 , … , 𝜆𝑛 be its eigenvalues and 𝑣1 , 𝑣2 , … , 𝑣𝑛
corresponding eigenvectors, with 𝑃 ≔ [𝑣1 … 𝑣𝑛 ]. Then:
- If P is invertible, then:
𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
▪ 𝑃−1 𝐴𝑃 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 𝜆𝑛
−1
- If 𝑄 𝐴𝑄 is a diagonal matrix 𝐷, then the columns of 𝑄 are eigenvectors of 𝐴 and the
diagonal entries of 𝐷 are eigenvalues of 𝐴.

Difference Equations
- One can use difference equations to model dynamical problems.
- If 𝐴 is a square matrix, then 𝑧𝑡+1 = 𝐴𝑧𝑡 is a system of linear difference equations (LDE).
- If you know the initial value 𝑧0 then you can iteratively calculate 𝑧1 , 𝑧2 , etc.
- In general: 𝑧𝑡 = 𝐴𝑡 𝑧0 , 𝑡 ≥ 0.
- A solution is of an LDE is a sequence of vectors {𝑧𝑡 }∞
𝑡=𝑡0 that ‘fits’ the LDE.
- The general solution of an LDE is the set containing all solutions of the LDE.
- The sequence {0, 0, 0, … } is a solution of an LDE for every 𝐴 and is called the null solution of
the LDE.




3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller bartkoopmans. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.33. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

53068 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.33  5x  sold
  • (1)
Add to cart
Added