100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Calculus 1 $3.71
Add to cart

Summary

Samenvatting Calculus 1

1 review
 186 views  9 purchases
  • Course
  • Institution
  • Book

Samenvatting van de theorie, alle theorie van de cursus is samengevat in deze samenvatting. Academiejaar Wiskunde: Calculus en Lienaire Algebra Semester 1 gegeven door Prof. Maes.

Preview 2 out of 11  pages

  • No
  • Hoofdstuk 2-6
  • March 31, 2022
  • 11
  • 2021/2022
  • Summary

1  review

review-writer-avatar

By: arleneharerimana • 2 year ago

avatar-seller
Wiskunde: Calculus I
Limits and Continuity
lim 𝑓(𝑥) = 𝐿 : f(x) nadert naar L als x voldoende dicht naar x0 nadert
!→!!


Constante functie en identiteitsfunctie: de limiet bestaat in elk punt en is gelijk aan de functiewaarde
Opm:
o Limiet is niet altijd gelijk aan de functiewaarde
o De functie hoeft niet gedefinieerd te zijn in x0
o Voor sommige functies bestaat de limiet in een bepaald punt niet




Neem aan dat g(x) ≤ f(x) ≤ h(x) voor alle waarde van x rond c behalve eventueel in c zelf.
Neem ook aan dat:




Als f(x) ≤ g(x) voor alle waarde van x in een open interval rond c behalve eventueel in c
zelf, en beide limieten bestaan dan:




Rechter- en Linkerlimieten




f(x) heeft een rechterlimiet L in x0 als:
∀𝜀 > 0, ∃𝛿 > 0 𝑧𝑜𝑑𝑎𝑡 𝑣𝑜𝑜𝑟 𝑎𝑙𝑙𝑒 𝑥 𝑚𝑒𝑡 𝑥# < 𝑥 < 𝑥# + 𝛿 𝑔𝑒𝑙𝑑𝑡 𝑑𝑎𝑡 |𝑓(𝑥) − 𝐿| < 𝜀

f(x) heeft een linkerlimiet L in x0 als:
∀𝜀 > 0, ∃𝛿 > 0 𝑧𝑜𝑑𝑎𝑡 𝑣𝑜𝑜𝑟 𝑎𝑙𝑙𝑒 𝑥 𝑚𝑒𝑡 𝑥# − 𝛿 < 𝑥 < 𝑥# 𝑔𝑒𝑙𝑑𝑡 𝑑𝑎𝑡 |𝑓(𝑥) − 𝐿| < 𝜀

, $%& ())
Opm: bestaat niet in 0
)


Limieten: Uitbreiding op ∞
+∞:
∀𝜀 > 0, ∃𝑀 > 0 𝑧𝑜𝑑𝑎𝑡 𝑎𝑙𝑠 𝑀 < 𝑥 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀

-∞:
∀𝜀 > 0, ∃𝑀 > 0 𝑧𝑜𝑑𝑎𝑡 𝑎𝑙𝑠 𝑥 < −𝑀 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀
∀𝜀 > 0, ∃𝑁 < 0 𝑧𝑜𝑑𝑎𝑡 𝑎𝑙𝑠 𝑥 < 𝑁 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀

Asymptoten en oneindige limieten
Horizontale asymptoot:
De rechte y = b is een horizontale asymptoot van f(x) als lim 𝑓(𝑥) = 𝑏 𝑜𝑓 lim 𝑓(𝑥) = 𝑏
!→+ !→,+


Oneindige limiet = de limiet ‘gaat naar’ ∞ maar ‘bestaat’ niet echt:
f(x) heeft een tweezijdige oneindige limiet x0 als lim 𝑓(𝑥) = +∞ 𝑜𝑓 lim 𝑓(𝑥) = −∞
!→!! !→!!


Verticale asymptoot:
De rechte x = a is een horizontale asymptoot van f(x) als lim" 𝑓(𝑥) = ±∞ 𝑜𝑓 lim# 𝑓(𝑥) = ±∞
!→- !→-


Schuine asymptoot = rechte waarvoor geldt dat de functie zich op oneindig gedraagt zoals de rechte
o Rationale functies waarvan de graad van de noemer 1 kleiner is dan de teller hebben
een schuine asymptoot




Indien ∀𝐵 > 0, ∃𝛿 > 0 𝑧𝑜𝑑𝑎𝑡 𝑎𝑙𝑠 0 < |𝑥 − 𝑥! | < 𝛿 𝑔𝑒𝑙𝑑𝑡 𝑑𝑎𝑡 𝐵 < 𝑓(𝑥)




Indien ∀𝐵 > 0, ∃𝛿 > 0 𝑧𝑜𝑑𝑎𝑡 𝑎𝑙𝑠 0 < |𝑥 − 𝑥! | < 𝛿 𝑔𝑒𝑙𝑑𝑡 𝑑𝑎𝑡 − 𝐵 < 𝑓(𝑥)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller lexilet. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.71. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

59063 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$3.71  9x  sold
  • (1)
Add to cart
Added