100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Biomaterials summary lecture $5.93   Add to cart

Summary

Biomaterials summary lecture

 14 views  0 purchase
  • Course
  • Institution

Biomaterials summary lecture

Preview 2 out of 13  pages

  • April 15, 2022
  • 13
  • 2021/2022
  • Summary
avatar-seller
Group 1 (Water contact angle)
- Quantative measurement (determine wettability of a surface by water).
- Indication of hydrophilicity (smaller angle indicates hydrophilic surface)
- Wetting/ non-wetting (complete not wetting (180 degrees) complete wetting (90)

- Static contact angles (boundary is not moving)
- Dynamic contact angles (no stationary contact angles, 2 angles can be distinguished
(picture)
- Factors to consider (roughness, heterogeneity, purity of solvent etc.)

Group 2 (Ellipsometry)
- Measures thickness and optical constant of thin films, with high
precision. It measures the change of polarization upon reflection or
transmission in comparison to a model.
- Characterize composition, roughness, thickness etc.
- Different fields use this
- Advantages: measures at least two parameters of each wavelength & measures an
intensity ratio instead of intensities.
Elliptical polarization of light is used.

Group 3 (Atomic force microscopy)
Sharp tip attached to a cantilever(silicon) which is attached to a z-piezo
(nanometer range accuracy)
Bending of cantilever (by repulsive energy) changes the direction of the laser
beam
Feedback loop: variation surface height and results in photodiode

Contact AFM:
Simple
Strong repulsive forces
Deformation or damage to surface
Easy to interpret
Non-Contact AFM:
AKA. Dynamic force microscopy
5-15 nm above surface
No deformation
Amplitude to determine surface
Time delay in feedback loop (disadvantage)

Group 4 (Laser scanning confocal microscopy)
Capabilities of CLSM
- Focus on a single focal plane within the specimen achieving sharp images
- From these single planes a 3D image can be obtained (stack sliced images)
- -> Provides structural and organizational information about cells and tissues
Advantages of CLSM
Compared to widefield fluorescence microscopy
- Control over the depth of field (because uses specific wavelengths)

, - Reduction of information that is not in the focal plane
- Allows to slice thicker specimens
Compared to TEM
- 3D imaging (TEM doesn’t allow this)
- Easier specimen preparation
Compared to SEM
- No need for vacuum condition (with CLSM)
- More detail, not only surface (CLSM can give more than only surface)
Compared to AFM
- No risk of tip interfering with specimen for CLSM

Group 5 (Dynamic light scattering)
- Technique in physics used to determine the size of (macromolecules)
particles down to 1 nm in diameter. The basic principle of DLS: 1. The sample
is illuminated by a laser beam and the fluctuations of the scattered light are
detected at a known scattering angle (θ) by a fast photon detector.

Basic principles
- Brownian motion: particles are constantly colliding with solvent molecules collisions
cause a certain amount of energy to be transferred – induces particle movement
- Smaller particles are moving and diffusing at higher speed than larger particles
- The relation between the speed of the particles and the particle size is given by the
stokes-Einstein equation – the speed of the particles is given by the translational
diffusion coefficient D – Requirement: particles move solely based on Brownian
motion -> no sedimentation
- Size limits: 1. Upper size: sedimentation 2. Lower size: signal-to-noise ratio

Advantages and disadvantages
Advantages:
● non-invasive, fast, and automated
● modest development costs
● can analyze samples containing broad distribution of species with different molecular
masses
● can detect small amounts of higher mass species (<0.01% in many cases)
suitable for molecular weight determination and size measurements of molecules in the
range of 10µm to less than 1 nm
● can also obtain radius of gyration and the translational diffusion coefficient

Disadvantages and Limitations:
● highly sensitive to solvent viscosity and temperature
● low resolution method ⇒ cannot differentiate between closely related molecules (e.g.
monomer and dimer)
● can only analyze liquid dispersion, whereas laser diffraction is effective for dry powders
too
● presence of large aggregates significantly affect the measurements

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller annerixtvanderwal. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.93. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

66579 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.93
  • (0)
  Add to cart