100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Core Pure Mathematics $10.49
In winkelwagen

Tentamen (uitwerkingen)

Core Pure Mathematics

 0 keer verkocht
  • Vak
  • Instelling

Given that z1 = 3cos   π3 + isin   π3  z = 2cos12π  − isin12π  (a) write down the exact value of (i) | z1z2 | (ii) arg (z1z2) (2) Given that w = z1z2 and that arg (wn) = ...

[Meer zien]

Voorbeeld 4 van de 32  pagina's

  • 3 mei 2022
  • 32
  • 2021/2022
  • Tentamen (uitwerkingen)
  • Antwoorden
avatar-seller
Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number
Pearson Edexcel
Level 3 GCE
Time 1 hour 30 minutes
Paper
reference 9FM0/02
Further Mathematics
Advanced
PAPER 2: Core Pure Mathematics 2


You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for algebraic manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• labelled.
Answer all questions and ensure that your answers to parts of questions are clearly

• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
• Inexact answers should be given to three significant figures unless otherwise stated.
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 9 questions in this question paper. The total mark for this paper is 75.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end.
• Good luck with your examination. Turn over



*P66797A0132*
P66797A
©2021 Pearson Education Ltd.

1/1/1/1/1/

,1. Given that
  π  π
z1 = 3  cos   + isin   
  3  3 
 π  π 
z2 = 2  cos   − isin   
  12   12  

(a) write down the exact value of
(i) | z1z2 |
(ii) arg (z1z2)
(2)
Given that w = z1z2 and that arg (w n) = 0 , where n  +
(b) determine
(i) the smallest positive value of n
(ii) the corresponding value of | w n |
(3)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P66797A0232*

,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 5 marks)

3
*P66797A0332* Turn over

,  4 −2
2. A= 
5 3

The matrix A represents the linear transformation M.
Prove that, for the linear transformation M, there are no invariant lines.
(5)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

4
*P66797A0432*

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper wilsonhenry. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $10.49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64257 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$10.49
  • (0)
In winkelwagen
Toegevoegd