Die Ordnung von G ist die Kardinalität der Menge G und wird mit Eine Gruppe ist eine nichtleere Menge G mit einer Verknüpfung ◦, die
|G| bezeichnet. Ist |G| endlich, so ist die Ordnung von G die Anzahl der zwei Elementen aus G ein Element aus G zuordnet: ◦ : G × G → G mit
Elemente in G. Im anderen Fall ist die Ordnung von G unendlich. folgenden Eigenschaften:
1. ∀ a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (Assoziativität)
2. ∃ e ∈ G : ∀ a ∈ G : e ◦ a = a (Existenz eines links-neutralen
Elementes
3. ∀ a ∈ G : ∃ b ∈ G : b ◦ a = e (Existenz eines links-inversen Elemen-
tes)
Das inverse Element zu a wird mit a−1 bezeichnet.
Eine Gruppe mit a ◦ b = b ◦ a für alle a, b heißt kommutativ bzw. Abelsche
Gruppe.
#4 Antwort #3 Antwort
Die Gruppe der Permutationen von n Elementen wird mit Sn bezeichnet Die bijektiven Abbildungen einer endlichen Menge auf sich selbst nennt
(exakt (Sn , ◦)). man Permutationen.
,Lineare Algebra #5 Gruppen Lineare Algebra #6 Gruppen
Wie ist die Untergruppe U einer Gruppe G Welche Ordnung hat die Gruppe Sn?
definiert?
Eine Permutation einer n-elementigen Menge lässt sich auf n! ver- Sei (G, ◦) eine Gruppe und U eine nichtleere Teilmenge von G, so dass
schiedene Arten festlegen: Für das Bild des ersten Elements hat man n (U, ◦) auch eine Gruppe ist. Dann heißt U Untergruppe von G.
Möglichkeiten, für das zweite noch n − 1 Möglichkeiten usw. Schließlich
bleibt für das Bild des letzten Elements nur noch eine Möglichkeit übrig.
Die Gruppe Sn hat somit die Ordnung n!.
#8 Antwort #7 Antwort
Sei U eine Untergruppe von (G, ◦). Dann sind die Familien {x · U |x ∈ G} Die alternierende Gruppe An ist die Menge aller geraden Permutationen
und {U · x|x ∈ G} Partitionen von G. Diese nennt man Links- bzw. Rechts- von n Elementen. Das ist eine Untergruppe der symmetrischen Gruppe.
nebenklassen. Die Anzahl dieser Nebenklassen heißt Index [G : U ] der
Untergruppe. U heißt Normalteiler, wenn Links- und Rechtsnebenklassen
übereinstimmen.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Mathematiker. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.46. You're not tied to anything after your purchase.