100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Statistiek (kansrekening en inductieve statistiek) $10.62
Add to cart

Summary

Samenvatting Statistiek (kansrekening en inductieve statistiek)

2 reviews
 538 views  25 purchases
  • Course
  • Institution
  • Book

Dit is een samenvatting van het vak 'Statistiek II' gegeven aan de Vrije Universiteit Brussel door Peter Theuns. Het vak heeft veel overlappingen met het vak 'Statistiek voor de gedragswetenschappen'. De volgende hoofdstukken komen aan bod in de samenvatting: introductie, hoofdstuk 4, hoofdstuk 5, ...

[Show more]
Last document update: 2 year ago

Preview 4 out of 57  pages

  • No
  • Introductie, hoofdstuk 4-8
  • May 26, 2022
  • June 23, 2022
  • 57
  • 2020/2021
  • Summary

2  reviews

review-writer-avatar

By: victorialavens • 4 months ago

review-writer-avatar

By: ls2000 • 2 year ago

avatar-seller
Inleiding
1. Beschrijvende statistiek VS Inferentiële statistiek
In Statistiek I hebben we de deductieve of de beschrijvende statistiek behandeld. Het doel hiervan is het
herkennen van globale patronen en het ontdekken van kenmerken aan de hand van kengetallen (=
karakteristieke waarden = beschrijvende maten (gemiddelde, standaardafwijking, correlatiecoëfficiënt,
…)) en figuren (histogram, spreidingsdiagram, …).

In Statistiek II behandelen we de inductieve of inferentiële statistiek. Dit is de verklarende statistiek. Het
vergelijkt onderzoeksgegevens met wat mogelijk is door TOEVAL, gebaseerd op kansrekening. Op basis
van een beperkt aantal gegevens wordt getracht om algemene uitspraken te formuleren over de gehele
populatie.


2. De steekproef geeft informatie over de populatie
In de beschrijvende statistiek gaan we proberen een perfecte beschrijving te geven van wat we hebben.
In de inferentiële statistiek gaan we nadenken over wat een steekproef ons vertelt over een hele
populatie. Wat kunnen we op basis van de gegevens van de steekproeven gaan besluiten over de
populatie? En wat zijn de grenzen? Hoe goed zijn de mogelijke conclusies die we maken op basis van de
steekproefgegevens?




1

, 3. Kans en inferentie
Aan de hand van kansrekening kunnen we onderzoeksresultaten vergelijken met ‘toeval’.

Is een rat in staat om van mensen te zien of het jonge mensen/ oude mensen en
mannen/vrouwen zijn?

Er zijn 4 deurtjes: één met een jong meisje, één met een volwassen man, één met een
jonge jongen en één met een volwassen vrouw. Achter één van de 4 deuren zit er voedsel.
De rat heeft 20 pogingen, dus telkens 1 kans op 4 voor een correcte keuze. We
verwachten gemiddeld 5 correcte keuzes. Zijn de volgende resultaten mogelijk of
waarschijnlijk?

- 7/20 → toeval
- 15/20 → kan je niet verklaren op toeval, want de kans is zeer klein dat de rat
15x correct is, dus kan het.
- (<) 4/20 → kan het niet

Als de rat niet in staat is om de foto's te herkennen, verwachten we dat hij toch nog 5x
juist is (door toeval).


4. Verzamelingen en combinatieleer
Verzamelingen
Een verzameling A is een groepering van n elementen a1, a2, …, an.

→ Notatie: A={a1, a2, …, an}

→ Venn-diagram:




Verzameling B is een deelverzameling van A die elementen a3 en an bevat.

→ Notatie: B Ì A

- Elke verzameling is een deelverzameling van zichzelf: A Ì A
- De lege verzameling is een deelverzameling van elke verzameling: Æ Ì A

Bewerkingen met verzamelingen
Unie en doorsnede
→ Unie: → Doorsnede:




We kunnen verzamelingen samennemen, dat noemen we de unie. De doorsnede is de overlapping
tussen de twee.




2

, - De unie van A of B is niet gelijk aan de som van de verzamelingen A en B omdat A en B ook
overlappen.
o De ‘of’ bij unie wijst op het feit dat het A of B of beide is.
o De unie komt overeen met plus
- Bij de doorsnede behoren alle elementen die zowel tot A als tot B behoren.
o De doorsnede komt overeen met maal.

Speciale situatie
Wanneer je twee verzamelingen hebt die niet overlappen en je maakt daarvan de unie, dan bestaat die
unie uit twee delen.

Als de doorsnede van A en B leeg is ( D = AÇB = Æ ), dan bestaat de unie van A en B ( C = AÈB ) uit 2 delen
(= disjuncte verzameling).




Verschil




Partitie
A1 È A2 È...È Am = A
of kortweg

Ai Ç Aj = Æ
voor alle i ≠ j

Een opdeling van een grote verzameling in een aantal deelverzamelingen. Door de som te nemen van
alle deelverzamelingen kan je verzameling in zijn geheel terug te bekomen. Er mogen geen
overlappingen zijn en de unie van alle verzamelingen samen moet terug de oorspronkelijke geven.

Deelverzamelingen A1, A2, A3, …. An vormen een partitie van A indien

1. Hun unie A oplevert

2. Ze 2-aan-2 uitsluitend zijn

Complement van een deelverzameling
Het complement van een deelverzameling B in A is (A \ B). Het complement is alles wat niet in de
verzameling zit.




3

, Combinatieleer
Bij combinatieleer spreken we van willekeurige volgorden waarbij het niet uitmaakt of het X-Y of Y-X is.
Dit wordt beschouwd als dezelfde volgorde.

Permutaties
Permutaties zijn het aantal volgorden van n verschillende objecten. Het zijn alle mogelijke volgorden
van elementen in een verzameling.

Het aantal permutaties van een verzameling van n elementen = n! =
n×(n-1)×(n-2)×…×1
Variaties
Variaties zijn het aantal geordende deelverzamelingen.

Het aantal geordende deelverzamelingen van r elementen uit een
verzameling van n elementen (waarbij de volgorde belangrijk is).




Combinaties
Het aantal combinaties van r elementen uit een verzameling van n
elementen
(waarbij de volgorde onbelangrijk is).




Combinaties doen zich voor bij groepjes waarin de volgorde van de elementen in die groepjes
onbelangrijk is.

Samenvattend




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller dl99. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.62. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52355 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$10.62  25x  sold
  • (2)
Add to cart
Added