100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Intro to Research in Marketing lectures + notes

Puntuación
-
Vendido
-
Páginas
95
Subido en
31-05-2022
Escrito en
2021/2022

Lectures of IRM with a lot of notes!

Institución
Grado













Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
31 de mayo de 2022
Número de páginas
95
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Els gijsbrechts
Contiene
Todas las clases

Temas

Vista previa del contenido

Intro to Research in Marketing Spring 2022


Index

Introduction Lecture ................................................................................................. 2

ANOVA Lecture ....................................................................................................... 12

Linear Regression Lecture .................................................................................... 23

Factor Analysis Lecture ......................................................................................... 39

Cluster Analysis Lecture........................................................................................ 55

Logistic Regression Lecture ................................................................................. 67

Conjoint Analysis Lecture ..................................................................................... 77

IRM Wrap-Up Lecture ............................................................................................. 89

,Introduction Lecture
HBBA: Chapter 1
1.1 Defining multivariate analysis
HBBA: ‘Broadly speaking, it refers to all statistical methods that simultaneously analyze
multiple measurements on each individual or object under investigation’

Why bother?
→ Almost every real-life marketing problem requires statistical analysis of several variables:
you need them in your toolkit!
→ Crucial for Master Thesis:
• ‘Translate’ marketing problem
• Collect data
• Analyze using R

1.2. Some basic concepts
• Measurement scales
• Errors: reliability and validity
• Statistical significance and power

Measurement scales
Nonmetric scales: Nominal & Ordinal
Metric scales: Interval & Ratio

Nominal scale:
• Characteristics: unique
definition/identification, classification
• Phenomena: e.g., brand name, gender,
student ANR
• Appropriate methods of
analysis/statistics: e.g.: %, mode, chi-
square tests

Ordinal scale:
• Characteristics: indicate ‘order’,
sequence
• Phenomena: e.g., preference ranking,
level of education
• Appropriate methods of
analysis/statistics: percentiles, median,
rank correlation + all previous statistics

,Interval scale:
• Characteristics: arbitrary origin
• Phenomena: e.g., attribute scores, price
index
• Appropriate methods of analysis:
arithmetic average, range, standard
deviation, product-moment correlation, +
previous methods

Ratio scale:
• Characteristics: unique origin
• Phenomena: e.g., age, cost, number of
customers
• Appropriate methods of analysis: geometric
average, coefficient of variation, + all previous
methods


1.2.2. Errors: Reliability and Validity
Reliability = Is the measure ‘consistent’ correctly registered?
Validity = Does the measure capture the concept it is supposed the measure? (example =
income)

1.2.3 Statistical significance and power




Hypothesis testing
Suppose that the truth is: “No difference”:
what would error-free population measure, lead to? =

,Hypothesis testing
Suppose that the truth is: “No difference”:
what would sample measures, with error, lead to? =




Type I error (α) = probability of test showing statistical significance when it is not present
(‘false positive’)

Type II error (1-β) = probability of test showing statistical significance when it is present

Power
Power depends on:
• α (+)
• Effect size (+)
• Sample size (+)
Implications:
• Anticipate consequences of α, effect
and n
• Assess/incorporate power when interpreting results


1.3. Types of Multivariate methods
Dependence or Interdependence techniques
→ Dependence techniques
• One or more variables can be identified as dependent variables and the remaining as
independent variables
• Choice of dependence technique depends on the number of dependent variables
involved in analysis

→ Interdependence techniques
• Whole set of interdependent relationships is examined
• Further classified as having focus on variables or objects

,
, HBBA Chapter 2: Preliminary data analysis and data preparation (SELF STUDY)

2.1. Conduct preliminary analysis:
Why?
• Get a feel for the data
• Suggest possible problems (and remedies) in next steps
How?
• Univariate profiling
• Bivariate analysis

2.2. Detect outliers
What are outliers? → “Observations with a unique combination of characteristics identifiable
as distinctly different from other observations” (HBBA)

There are two basic types of outliers:
• ‘good’ = true value (probably)
• ‘bad’ = something is wrong?
→ To distinguish these types, one should investigate the causes:
− Procedural error
− Exceptional circumstances (cause known or unknown)
− ‘Regular’ levels, yet unique in combination with other variables (bivariate and
multivariate outliers)

Why worry? → Bad outliers completely mess up the results

How can we detect outliers?
• Univariate (Histograms, TS plots, Frequency Tables, Mean +/- 3SD, Box Plots)
• Bivariate (Scatterplot, Multiple Histograms)
• Multivariate (Mahalanobis D2)

Keep or delete? → “Judgement Call”
• Only observations that truly deviate can be considered outliers
• Removing many ‘outliers’ can jeopardize representativeness

2.3. Examining missing data
Missing data lead to:
• Reduced sample size
• Possibly biased outcomes if missing data process not random → 4-step approach: for
identification and remedying

Steps in missing data analysis:
1. Determine type of missing data: Ignorable / Non-ignorable missings?
2. Determine extent (%) of missing data: By variable, case, overall
3. Diagnose randomness of missing data: Systematic, Missing at Random (MAR),
Missing Completely At Random (MCAR)?
4. Deal with the missing data problem: Remove cases or variables with missing values,
use imputation

→ Step 3: Diagnose randomness of missing data
Are non-ignorable missings:
• Systematic = linked to level variable itself, another pattern?
• Missing at Random (MAR) = whether Y is missing depends on level of X. Yet, within
level of X: missing at random
$7.24
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
pienhuberts

Conoce al vendedor

Seller avatar
pienhuberts Hogeschool Arnhem en Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
7 año
Número de seguidores
0
Documentos
6
Última venta
5 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes