100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Physics for Scientists and Engineers, ISBN: 9781405886093 Fysica: Mechanica (X_430060) $7.94
Add to cart

Summary

Samenvatting Physics for Scientists and Engineers, ISBN: 9781405886093 Fysica: Mechanica (X_430060)

 23 views  2 purchases
  • Course
  • Institution
  • Book

Samenvatting hoofdstuk 1 t/m 11 Fysica mechanica

Preview 4 out of 32  pages

  • No
  • Hoofdstuk 1 t/m 11
  • June 3, 2022
  • 32
  • 2019/2020
  • Summary
avatar-seller
Samenvatting Mechanica
‘Physics’ door Giancolli 4 e editi e: hoofdstuk 1 t/m hoofdstuk 15


1.3 Metingen en Onzekerheid; Significante cijfers
Hoofdstuk 1: Introductie, Metingen, Schatten

Foutenberekening
Absolute fout: δx=x−x w
δx x−x w
Relatieve fout: =
x x
δx
Procentuele fout: 100 ∙
x

Tel experiment: q ± √q
δq =√ ( δx ) + ( δy )
2 2
Optellen en aftrekken: q=x + y of q=x− y
δq
x
Vermenigvuldigen en delen: q=x ∙ y of q=
y ¿ q∨¿=
x
+

δx 2 δy 2
y
¿
δq
Exact getal: q=Bx δq =¿ B∨∙ δx of δx
¿ q∨¿= ¿
¿ x∨¿ ¿
δq
Machten: q=x n
δx
¿ q∨¿=¿ n∨∙ ¿
¿ x∨¿ ¿
δq
Functies: q=q (x) δq =¿ ∨∙ δx
δx


2 2
Algemene formule: q=q (x , y ) δq δq
δq = ( ∙ δx) +( ∙ δy)
δx δy

Significante Cijfers
Een antwoord moet gegeven worden in de hoeveelheid cijfers die significant zijn. Regels voor
significantie zijn:
1. gebruik even veel significante cijfers in het antwoord als in de waarden met de minste
significante cijfers die in de som zijn gebruikt;
2. de % fout moet altijd inbegrepen zijn in de significantie cijfers;
3. nullen voor het eerste getal zijn nooit significant, nullen na het laatste getal kunnen ook
niet significant zijn (kijk naar de fout);
4. gebruik ∙ 10n om het aantal significante cijfers te wijzigen.


1.4 Eenheden, Standaarden en het SI Systeem
Hoofdstuk 1: Introductie, Metingen, Schatten




1

,Grootheden & eenheden
grootheid afk. eenheid afk.
lengte l meter m voorzets afkortin waarde
tijd t seconde s el g
massa m kilogram g giga G 109
6
stroomsterkte I ampère (1 C/s) A mega M 10
lading Q coulomb C kilo k 103
spanning U volt V hecto h 2
10
temperatuur T kelvin (0 ° K = - K
273,15 ° C
deka da 101
−1
hoeveelheid stof mol mol deci d 10
lichtsterkte I candela cd centi c 10−2
positie x meter m 2.1 Referentiekaders
milli m 10
−3

snelheid v meter per seconde m s-1 enmicro
Verplaatsing
μ 10
−6

versnelling a meter2 per seconde m2 s-1 Hoofdstuk 2: Beweging
Beschrijven: Kinematica in 1
Dimensie

Kinematica is het beschrijven
van de beweging van objecten. Dynamica gaat over krachten en waarom objecten op een
bepaalde manier bewegen. Translationale bewegingen zijn beweging zonder draaiing.

Wanneer een object beweegt van punt 1 naar punt 2, kun je de verplaatsing van het object
berekenen met Δ x=x 2−x 1. Dit is de lengte van de vector die getekend kan worden bij deze
beweging. Deze vector wordt bepaald door de coördinaten die bij de beweging worden, die je uit
kan zetten in een assenstelsel met de x-, y- en z-as. De lengte van de vector en de verandering in
positie is altijd positief. De afstand die bewogen is, is niet altijd hetzelfde als de verplaatsing.


2.2 Gemiddelde Snelheid
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie

De gemiddelde snelheid is onafhankelijk van de richting waarin een object beweegt. Het wordt
gedefinieerd als de afstand die afgelegd is gedeeld door de tijd die verstreken is met als eenheid
m/s. De vergelijking is dus:
∆x
v=
∆t

Je kunt ook wel de richting van de beweging weergeven met een vector, wanneer de volgende
formule wordt gebruikt:
x⃗
⃗v =
Δt


2.3 Ogenblikkelijke Snelheid
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie

De snelheid van een object fluctueert over de tijd, waardoor de snelheid op een bepaald
moment verschilt van de gemiddelde snelheid. De snelheid op een moment kun je berekenen
met de limiet van ∆ t →0 :



2

, ∆ x dx
v= lim =
Δt →0 ∆ t dt

Dit is de afgeleide van de verplaatsingsvector. De snelheid op een bepaald moment is de helling
van de raaklijn van de grafiek in een x vs. t grafiek. ∆ t word namelijk oneindig klein, waardoor
de helling tussen t i en t 1 gelijk wordt aan de raaklijn. Wanneer een object een constante snelheid
heeft, is de snelheid op een bepaald moment gelijk aan de gemiddelde snelheid.


2.4 Versnelling
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie

De versnelling van een object geeft aan hoe snel de snelheid van dat object verandert.

Gemiddelde Versnelling
De gemiddelde versnelling (in m/s2) wordt gedefinieerd als de verandering in snelheid gedeeld
door de tijd waarin deze verandering plaatsvond.

v 2−v 1 ∆ v
a= =
t 2−t 1 ∆ t

Versnelling is net zoals snelheid een vector, met een richting en grootte.

Ogenblikkelijke Versnelling
De versnelling op een bepaald moment wordt gedefinieerd als de limiterende
waarde van de gemiddelde versnelling als ∆ t ⟶0 .

2
∆ v dv d x
a= lim = =
∆ t →0 ∆ t dt d t 2

Dit is de afgeleide van de snelheidsvector of de dubbele afgeleide van de
verplaatsingsvector. De versnelling op een bepaald moment is de helling van
de raaklijn van de grafiek in een v vs. t grafiek.


2.5 Beweging bij Constante Versnelling
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie

Bij een constante versnelling kunnen de vergelijkingen voor x , v en a omgeschreven worden.
Hierbij wordt t 0=t 1=0 gekozen, waardoor t 2=t . Daarnaast zijn x 0 en v 0 de initiële positie en
snelheid respectievelijk.

v=v 0 + at
x=x 0 + v t
v +v
v= 0
2
1 2
x=x 0 +v 0 t+ a t
2
v 2=v 20 +2 a ( x−x 0 )


3

, 2.6 Problemen Oplossen
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie




2.7 Vrij Vallende Objecten
Hoofdstuk 2: Beweging Beschrijven: Kinematica in 1 Dimensie

Op elke plek op aarde wanneer luchtweerstand verwaarloosbaar is, zal elk object met dezelfde
versnelling vallen, namelijk g=9.81 m/s2. Deze versnelling wordt de
gravitatiekracht genoemd. Bij vallende objecten is er alleen
beweging in de verticale richting waardoor x wordt y en x 0 wordt y 0,
waarbij y 0=0 vaak gekozen wordt.

1
y= y 0+ v 0 t+ a t 2
2

Er staan een aantal handige opdrachten in deze paragraaf over
vallende objecten. De afbeelding hieronder geeft de y vs. t grafiek en
v vs. t grafiek weer van een bal die recht omhoog wordt gegooid en
weer naar beneden valt.




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller aagdebruijn. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.94. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

53068 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.94  2x  sold
  • (0)
Add to cart
Added