100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
️Mathe 11. Klasse Zusammenfassung - Vektoren & Ableitung️ $5.90   Add to cart

Summary

️Mathe 11. Klasse Zusammenfassung - Vektoren & Ableitung️

 3 views  0 purchase
  • Course
  • Institution

- Vektoraddition, Vektorprodukt, Skalarprodukt, Länge eines Vektors - Stammfunktion, Faktor-, Produkt-, Quotienten- und Kettenregel - Trigonometische Ableitung - Kurvendiskussion, Spiegelung der Funktion

Preview 2 out of 7  pages

  • June 4, 2022
  • 7
  • 2020/2021
  • Summary
  • Secondary school
  • Gymnasium
  • 1
avatar-seller
✗ ( ↳gygyg
Vektoraddition
ä +5 Summen"""
:b ;

Läuse

=


aa;
as + b • a
,





Sonderfall Vektorsumme : von



BÖ FÖ AD Basics
'

AB + + = •
A


ä oder l s

Sonderfall :
Anfangspunkt Endpunkt -




AÖ BÖ + + CÄ = AÄ -
-
Ö

alle Pfeile die gleich
, lang parallel und
,




gleich orientiert sind heißen
→ Nullvehtor
Repräsentant eines Vektors
Das S

Unterschied in Orientierung :

ä
Vektorprodukt / Kreuzprodukt Gegen vektor
"




äx b- = a × b, •
Vektor mit Länge Null :


äo
,

az b,
as b] „
Nullvehtor "



=
an ✗ b, = az-bs-as.bz .
Vektor mit Fußpunkt im Ursprung :


bz asbn an by
-

az


b a Bestim
Ortsvektor "
y bs anbz azbn
a -



}
by
az bz •
a- =
an 0
az
.
es gilt kein Uommutahugeseh a, wenn

, kommt nicht dran !
Term der Ableitungsfunktion (h Methode )

f- ( x) = ×
-

Ableitungen
f) (x ) = (im
h so
-
f (✗ + h)
h
-

ff) Allgemeines
→ auflösen Basics

→ für h den Annäherungswert einsehen •
Stamm funktion Ff ( ) × < >
Ableitungsfunktion
'
f- (x )
→ am Ende hat man Ableitungs funktion

Allg Formel der .
Ableitung
Ableitungsregeln ✗
r r -
1
FG ) > f (× )
'
= r . ✗

Faktorregel
'
r -
1
[ a. f- ( x ) ]
'
=
a. f) ( ) x a ER f- (x)
'
> FG) G . ✗ = a .

r -11
Summenregel f- ( )
n
f- ( )
-


: x = × → x = 1
"
×
' '

(f- ( ) IgG )] fix ) G ) JA
'
fix) ± g. ( f- ( ) ?
'

f- ( )
"
x =
)
× x = × .
> x = ×
=
x =




-





Produkt regel (wenn in beidenFaktoren
-
✗ ist)

' Graph
[ulx) v4)]
' '
.
=
n (x) v4 ) -1nA)
• •
✓ (x)


Quotienten regel Graph der Stamm funktion f Graph der Ableitungs funktion f
'



'



( [¥ ] =
uk) v4) uf) v14) steigt oberhalb der x-Achse (f ' 0)
• - . • •
>
'
( )]x


fällt •
unterhalb der x-Achse ( fho)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller slfrank. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.90. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.90
  • (0)
  Add to cart