Samenvatting klinisch wetenschappelijk handelen 2 deel statistiek
11 views 0 purchase
Course
Klinisch wetenschappelijk handelen 2
Institution
Thomas More Hogeschool (tmhs)
In dit document vind je een samenvatting van klinisch wetenschappelijk handelen 2 deel statistiek. Het vak wordt gegeven in logopedie en audiologie fase 2.
Inductief = toets selecteren die helpt om de gestelde hypothese te staven a.d.h.v. een steekproef
Probleem van de inductieve statistiek
- Populatie toetsen onmogelijk, €
- Oplossing: steekproef trekken (representatief!)
- Uitspraak doen met een bekende mate van
(on)zekerheid
De kansberekening over de zekerheid
- Uitgaande van geen verschil tussen groepen
- Hoe groot is de kans dat we wel verschil
observeren
- Is de kans groot? Dan gaat de observatie snel
vastgesteld worden
Misbruik
- Statistiek is een hulpmiddel, geen doel
- Beïnvloeding van keuzes, incorrect gebruik van cijfergegevens
- Zwakke onderzoeksmethodes (interbeoordeelaarsbetrouwbaarheid)
- Vage beweringen
- Onterecht gebruik van termen als ‘wetenschappelijk bewezen’
KANS
= De mate van (on)zekerheid over het optreden van een bepaalde gebeurtenis in de toekomst
- = Kansverdeling (hypothetisch) is een vorm van frequentieverdeling (observatie)
- = Voorspellen wat de frequentie van voorkomen zal zijn van een gebeurtenis indien we oneindig vaak
de proef op de som nemen
Symbolen
- P = probaliteit, kans (dat iets voorkomt)
- M = betreffende gebeurtenis die we willen halen
- N = het aantal waarden waaruit ik een steekproef trek, uitkomstenruimte (U)
- Elementaire gebeurtenissen = de elementen in de uitkomstenruimte
- N(M) = het aantal keer dat de gewenste waarde voorkomt in het totaal aantal waarden N
De kans op een gebeurtenis
- P(M) = de kans om de waarde M te krijgen
- P(M) = N(M)/N
, Mogelijke uitkomsten
- Kans op één specifieke elementaire gebeurtenis een kans is nooit negatief
o P(M) ≥ 0
- Kans op eender welke gebeurtenis uit U
o P(M) = 1 want het is de som van alle kansen op elementaire gebeurtenissen uit U
o Mits alle kansen gelijk zijn aan N(M)/N en we dit N keer optellen wordt dit N/N
- Kans op niet de ene specifieke elementaire gebeurtenis (kans op tegenovergestelde meting)
o P(niet-M) = 1-P(M)
VOORBEELD
Een dobbelsteen bevat 6 waarden (N = 6)
De uitkomstenruimte U = {1, 2, 3, 4, 5, 6}
We zoeken de kans op het gooien van ‘6’ in één keer.
Het aantal keer dat 6 voor komt in U = N(6) = 1
P(6) = N(6) / 6 = 1/6 = 0,167 = 16,7% de 6 cijfers komen allemaal maar één keer voor.
Bij een perfecte dobbelsteen en een aselecte steekproef met teruglegging heeft elke gebeurtenis uit de
uitkomstenruimte evenveel kans om voor te komen.
We spreken in dit geval van een: uniform kansenmodel elk element in de uitkomstruimte heeft evenveel kans om
getrokken te worden
µx = E(X) = P(X = x1) (x1) + P(X = x2)(x2) + … + P(X = xk)(xk)
= (1/6)(1) + (1/6)(2) + (1/6)(3) + (1/6)(4) + (1/6)(5) + (1/6)(6) = 3,5
= de verwachte waarde van wat ik gemiddeld zal gooien
x = SE(X) = E(X - x)²
= [(P(X = x1) (x1 - µx)² + P(X = x2)(x2 - µx)² + … + P(X = xk)(xk - µx)²]
= [(1/6)(1-3,5)² + (1/6)(2-3,5)² + (1/6)(3-3,5)² + (1/6)(4-3,5)² + (1/6)(5-3,5)² + (1/6)(6-3,5)²]
= 1,71
Met een dobbelsteen oneindig veel keer gooien geeft een verwachte waarde van 3.5 en een SD van 1.71
KANSVERDELING
De kansverdeling:
- ≈ frequentietabel
- Theoretische waarden niet echt vastgesteld
- Gemiddelden en standaardafwijkingen zijn dus in principe niet toe te passen
- Daarom: doen we alsof we oneindig vaak gooien met de dobbelsteen
- Soort van gemiddelde = de verwachte waarde (verwacht gemiddelde van de populatie) ≠ het
gemiddelde van de steekproef
- x of E(X)
- E(X) = P(X = x1) (x1) + P(X = x2)(x2) + … + P(X = xk)(xk) de kans van elke mogelijkheid in de uitkomstruimte
vermenigvuldigen met de uitkomst zelf
- E(X) = xiP(X= xi)
- variantie
o x² = E(X - x)²
o x² = P(X=xi)(xi - µx)² = ((xi - µx)² / N)
- Standaardafwijking, x of SE(X)
o x = x ² = SE(X) = E(X - x)²
Kansverdeling van het steekproefgemiddelde
- Uit de populatie kunnen nu oneindig veel steekproeven getrokken worden
- Op zoek naar de verwachte waarde van de verschillende steekproefgemiddelden
- Alle gemiddelden van de steekproeven volgen een verdeling
- De kansverdeling geeft informatie om te weten hoe groot de kans is op een bepaald gemiddelde
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller LeenVerresen. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.94. You're not tied to anything after your purchase.