Samenvatting van de hoofdstukken 4, 5, 6 en deels 7 (t/m 7.3) - Cellen en weefsels
50 views 0 purchase
Course
Cellen En Weefsels (BB3CEWE)
Institution
Universiteit Utrecht (UU)
Book
Molecular Biology of the Cell
De hoofdstukken 4.1, 5.1-3, 6.1-2 en 7.1-3 van de hoorcolleges zijn samengevat voor het eerste deeltentamen. Het is niet volledig, er mist nog wat, zoals het college over eiwitsortering (hoofdstuk 12), elektronenmicroscopie en 7.4 en 7.5.
Summary Molecular Biology of the Cell 2 (book) (WBFA007-04)
Summary Regenerative Medicine
All for this textbook (62)
Written for
Universiteit Utrecht (UU)
Biologie
Cellen En Weefsels (BB3CEWE)
All documents for this subject (80)
Seller
Follow
MLSstudent
Reviews received
Content preview
Hoofdstuk 5-1: Replication
DNA replicatie = verantwoordelijk voor het maken van een exacte en volledige kopie
van onze genoom.
Genome size and mutation rate
• E. coli heeft ongeveer 4x10^6 nucleotide paren
• Homo sapiens heeft er meer, 3x10^9 nucleotide paren
• Mutatiesnelheid is 1 nucleotide substitutie per 10^10 per cel generatie bij een
bacterie
• Bij mensen zit het anders, want er zijn 100 celdelingen nodig om weer van een
bevrucht eicel weer een nieuw eicel of een zaadcel te produceren
• Bij elk nieuw kind dat bij mensen geboren wordt, zijn er 70 nieuwe mutaties
plaatsgevonden
• Is dat erg? Niet echt.
• Mutatiesnelheid beperkt genoom grootte en het aantal essentiële genen
• Menselijke DNA dat codeert voor eiwitten is maar 1.5%
• Dat is ongeveer 21000 genen
• 27000 nucleotide paren
• Het overgrote deel van het DNA bestaat uit intronen: niet-coderend DNA
Sequence content of the human genome
• Coderende sequentie is maar een klein deel van het genoom
• Intronen en transposons vormen het overgrote deel van het genoom en zijn
niet-coderend
• Dus de kans dat die 70 mutaties
terechtkomen in de
coderende/belangrijke sequenties is
niet heel groot
• Daarom is het niet zo erg
,High fidelity replication
Hoe krijg je nou DNA replicatie op zo
hoge precisie? (1 fout per 10^10
nucleotiden paren)
• Basenparing tussen de
nucleotiden
• DNA polymerisatie
• DNA polymerase kan fouten
corrigeren door proofreading
• Mismatch repair
DNA polymerase: correct base-pairing is more energetically favorable
• DNA polymerase is een groot enzym dat werkt op basis van basenparen
vorming tussen nucleotiden en een template strand van een DNA.
• Template strand is enkelstrengs DNA.
• De andere strand is waarmee basenparen wordt gemaakt en een vrije 3’
uiteinde heeft, waarmee een nieuwe nucleotide toegevoegd kan worden.
• De nieuw ingebouwde nucleotide heeft 3 fosfaatgroepen aan het 5’ uiteinde, 2
daarvan worden afgeknipt en de energie die hierbij vrijkomt wordt dan gebruikt
om een nieuwe verbinding te maken met de primer strand.
• DNA polymerase versnelt het proces: katalyseert en daarnaast ook zorgt dat
de goedpassende nucleotiden ingezet worden.
• DNA polymerase creëert extra controle op de basenparen en zorgt voor de
kleine kans op fouten.
DNA polymerase: exonucleolytic proofreading
• Mocht er alsnog een foutje gemaakt worden, dan kan DNA polymerase deze
fout herstellen, want de laatste fout ingecorporeerde nucleotide maakt dan
geen goede basenpaar.
, • Dat is geen goed substraat voor de nieuwe nucleotide die
ingecorporeerd wilt worden.
• DNA polymerase gaat hier niet mee verder en knipt de fout
ingebouwde nucleotide met exonuclease activiteit, daarmee
wordt het goede substraat hersteld.
• De juiste nucleotide kan worden ingebouwd.
Two modes of DNA polymerase activity: polymerization and editing
• Daarvoor heeft DNA polymerase 2 katalytische sites
• Een polymerisatie site waar de polymerisatie gebeurt
• De editing site waar het 3’ uiteinde van de vers gemaakte
DNA naartoe wordt getransporteerd als daar een fout is in de
ingebouwde nucleotide en wordt die fout afgeknipt
Consequences of high-fidelity self-correcting DNA polymerase activity
• DNA polymerase kan geen begin maken van een nieuwe DNA streng
o Daarvoor is primase nodig, die gebruikt RNA nucleotides om een streng
te bouwen: RNA primer, dat is een RNA polymerase en kan beginnen
waar nog geen DNA streng aanwezig is.
o Primase maakt RNA primer.
• Omdat er exonuclease activiteit is en de nieuwe nucleotide fosfaten heeft aan
de 5’ uiteinde, kan polymerisatie alleen aan de 3’ uiteinde plaatsvinden. Dus
replicatie van 5’ naar 3’.
o Als er geen
exonuclease
activiteit is, dan
zou je vanaf de 5’
kant kunnen
polymeriseren.
o Maar na
verwijdering van
een nucleotide heb
je geen
energiebron meer
en zou het een
dood einde zijn.
, Proteins at the replication fork from a replication machine
DNA is passed through, the energy is derived from nucleotide hydrolysis
• DNA polymerisatie vindt plaats in een replicatievork
• Helicase (ATPase) haalt de dubbele DNA streng uit elkaar en zit voorop
• Je hebt altijd 2 DNA polymerases nodig
o Éen die repliceert in de leading strand, DNA polymerase zit altijd vast
aan het DNA met een sliding clamp
o Éen die repliceert in de lagging strand, die moet in stukjes gerepliceerd
worden. Verschillende onderdelen die bij deze strand horen zitten ook
aan de vork, waardoor DNA een loop kan maken.
• Wanneer helicase over het dubbelstrengs DNA gaat, dan krijg je enkelstrengs.
Single-stranded DNA-binding proteins binden aan deze enkelstrengs DNA,
zodat die geen stemloops en andere structuren maakt.
• Primase is een enzym met lage precisie, dus die moeten uiteindelijk
verwijderd worden.
What is the main source of the
free energy for the mechanical
work performed by helicases
during DNA replication in our
cells?
ATP hydrolysis by the helicase.
Strand-directed mismatch repair removes replication errors
• Als de DNA strengen klaar zijn, dan komt daar een extra controle bovenop.
• Dat wordt uitgevoerd door strand-directed mismatch repair. Een eiwit die
controleert of DNA strengen helemaal goed zijn, of daar nog mismatches
inzitten.
• Die mismatches worden zo gerepareerd dat de nucleotide die niet past, wordt
altijd verwijderd van de nieuw gesynthetiseerde streng, niet van de template
(oude) streng.
• De cel gaat er vanuit dat die fout is ontstaan tijdens de replicatie.
• Hoe weet de cel welke DNA streng nieuw is en welke oud?
o Bij bacteriën is er GATC methylatie. Deze methylatie vindt plaats op de
oude streng en de nieuwe streng wordt genicked (knik) => ingeknipt, er
ontstaat een single strand break. Reparatie mechanisme herkent de
streng met kniks, daar waar een mismatch is, wordt een stukje DNA
verwijderd en met repair DNA synthesis wordt de nieuwe streng
hergesynthetiseerd. DNA ligase zorgt voor ligatie.
o Bij mensen is er een knik in de nieuwe streng.
o Hierdoor worden de overgebleven fouten nog eens weggehaald.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller MLSstudent. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.83. You're not tied to anything after your purchase.