100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

HCM Advanced Research Methods part 3: Combining methods (lectures/working groups)

Beoordeling
-
Verkocht
3
Pagina's
14
Geüpload op
03-07-2022
Geschreven in
2021/2022

Notes of the lectures and working groups from the third part of the course: advanced research methods. In this part the quantitative and qualitative methods are combined. My exam grade: 7.8 Master Healthcare Management.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
3 juli 2022
Aantal pagina's
14
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Eshpm
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Lecture 6: Synthesis: quantitative and qualitative methods

Quantitative part

Objectives segment 1:
- Explain the three different goals for quantitative research (associations)
- Explain how the strategy for descriptive research differs from the strategy for causal inference

1960-2010: methodological development focused on statistical methods
- Development of new techniques
- Improvements in computers and software
- Standardized tests, ‘objectivity’
- Helpful and harmful ® we can do more and better research, but people stopped thinking
themselves and rely on the software

® Associations can be seen in the data, but it is nothing more. What do they mean is up to the
researcher to determine.

Newer developments (not black and white)
- Causal theory
- What should be part of quantitative analysis?
- Interpretation: meaning of results depends on context

The largest part of a quantitative analysis is not about numbers.

Three possible aims to investigate associations:
- Causal inference
- Prediction
- Description

Distinguishing them makes sense, they have crucial differences in design, statistical methods,
interpretation, evaluation, role for theory/subject knowledge.

Causal inference Prediction Description
Goal Find causal effects Predict the future (or the past, or Describe patterns
- Counterfactual the current) - Identify patterns in
prediction: what if - Given what you observe the data
- Not only about what is, - No if - Matter of fact, goal
but also about what - What, given in itself
could be If you know A/B/C, what can you ® Potential starting point
say about D? for policy or further
(causal) research
Example 1. How does Netflix know what Excess mortality due to
films I like? ® watching one film coronavirus in different
makes it more likely that you will countries
like the other one too
2. Diagnosis: recognizing a
disease by the symptoms (reverse
causality a problem? ® no
because this is not about causal
inference)



1

, Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Research Why do some groups put more What kind of people will want Which groups are less open
questions value on screening than others: screening in the future? to screening?
causal inference (mediation
analysis) Background: What should the Background: In which
screening capacity in different groups could extra
Background: areas be? promotion be important?
development/testing of theory,
role of culture
Methods 1. Theory Driven 1. May be data driven: try what Bivariate associations:
2. DAG’s (exchangeability) works - Proportions/means
3. To block backdoor paths 2. Regression analysis can be /ratios per group
(randomisation, regression, used ® equation can be used for - Continuous
stratification, predictions on the individual level independent
weighting/matching) (with the first dataset, you variable ®
4. Consider blocking causal develop the regression equation correlation
paths (mediation) to predict outcomes in the coefficient
second dataset) (outdated, not
® sophisticated methods for intuitive); corm
regression may be required categories of
(prevent overfitting, the equation continuous
fits a certain dataset so well that independent
it is less suited for another variable; regression
dataset) with one
independent
No randomisation ® you do not variable
want to interfere.

No stratification ® will probably
not lead to precise predictions.

No weighting/matching ® would
require defining one exposure
Adjustment Yes! Otherwise, the results are No! This would obscure,
s affected by confounding bias remove, or increase the
due to a lack of exchangeability associations.
Results have no
interpretation anymore.
Interpretati Results have intrinsic meaning: Usually, no interest in 1. Direct, intuitive
on - Coeff represents interpretation of coeff for interpretation of
estimates of the individual predictors. Not useful: comparison of
(average) effect test whether there is an means/proportions/ratios
- Coeff in OLS association. 2. OLS coefficient
- Adjusted proportions - No clear intrinsic meaning
(average adjusted - No causal interpretation
predicted probabilities) - Coeff: ‘people with A were more
- RR, RD likely to have B/higher B, given all
- How strong is the other variables’
association?
CI Performance is crucial: evaluation
P-value may play a role of the model.




2
$7.19
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
joycerommens Erasmus Universiteit Rotterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
81
Lid sinds
6 jaar
Aantal volgers
48
Documenten
29
Laatst verkocht
2 weken geleden

2.7

6 beoordelingen

5
0
4
1
3
3
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen