100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Wiskundige methoden en technieken Stappenplan - semester 1 $5.90
Add to cart

Summary

Samenvatting Wiskundige methoden en technieken Stappenplan - semester 1

6 reviews
 358 views  29 purchases
  • Course
  • Institution

Aangezien wiskunde een zeer moeilijk vak was om te studeren, had ik nood aan een extra overzicht van de theorie. In het bestand vind je de te kennen theorie terug maar dan met stappenplannen en voorbeelden om de leerstof beter te begrijpen en toe te kunnen passen! Als student die 2 uur wiskunde ...

[Show more]

Preview 3 out of 18  pages

  • July 4, 2022
  • 18
  • 2021/2022
  • Summary

6  reviews

review-writer-avatar

By: florenceverstraeten0510 • 11 months ago

review-writer-avatar

By: timvandaele2000 • 1 year ago

review-writer-avatar

By: irmasuka • 7 months ago

review-writer-avatar

By: BertV • 1 year ago

Translated by Google

Normally I don't post reviews but this file made me pass the exam really well!

review-writer-avatar

By: RobbeSchoenmaker • 1 year ago

Translated by Google

The roadmaps suddenly made all the difficult subject matter a lot clearer! It helped me a lot, so I succeeded myself! Thanks!

review-writer-avatar

By: ArnoW • 1 year ago

Translated by Google

A very comprehensive summary of the theory and exercises! The self-made step-by-step plans help to solve the solution in a structured way! The step-by-step plans and examples suddenly make everything much easier!

avatar-seller
!!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


REËLE FUNCTIES VAN EEN VERANDERLIJKE (H1)
Kernbegrippen i.v.m functie’s
DEF Expliciet/ impliciet

Men spreekt v/e expliciete voorstelling van de Men spreekt v/e impliciete voorstelling van de
functie f : ℝ->ℝ, wnr voorschrift geëxpliceerd functie f : ℝ->ℝ, wanneer het voorschrift
is naar de afhank. veranderlijke, m.a.w. y = f(x) impliciet bepaald wordt uit een verband F(x,y) = 0

DEF Symmetrieën

Een reële functie f : ℝ->ℝ : x->f(x) is een even Een reële functie f : ℝ->ℝ : x->f(x) is een oneven
functie, indien voor elke waarde x uit het functie, indien voor elke waarde x uit het domein
domein geldt: f(−x) = f(x) geldt: f(−x) = −f(x)

-> grafisch: symmetrisch t.o.v de y-as -> grafisch: symmetrisch t.o.v de oorsprong

Stappenplan:
1) Test: vervang alle x-waarden door -x
2) Gaan alle “-“ worden weggewerkt?
-ja: even functie (opl is f(−x) = f(x))
-nee: oneven functie (opl is f(−x) = -f(x))

DEF Inverse functie
Stappenplan:
Een functie f-1 : ℝ->ℝ : x-> f-1(x) is de inverse 1) Herschrijf het voorschrift y=f(x) tot een vorm
functie van f : ℝ->ℝ : x->f(x), indien voor elke x= een functie van y
waarde x uit het domein van f geldt: 2) Controleer of het domein beperkt moet
f(x) = y <=> f-1(y) = x worden
2.1) indien nodig, voorschrift opnieuw
Merk op oef: domein en bereik omwisselen herschrijven zodat het beperkt wordt
-> grafisch: gespiegeld t.o.v de 1ste bissectrice 3) Wissel x en y om

DEF Samenstellen van functies
Stappenplan:
Een reële functie h : ℝ->ℝ : x->h(x) is een 1) Neem functie voorschrift v/d 1ste komende (f)
samenstelling van functies g : ℝ->ℝ : x->g(x) als argument bij de 2de (g)
“na” f : ℝ->ℝ : x->f(x), of H = g o f 2) Neem de functie v/d 2de en pas argument toe

Limietwaarde -> kijk werkcollege 3! En schema achteraan!
DEF Limiet

Een functie f : ℝ->ℝ : x->f(x) bereikt in het lim f ( x )=L -> “de limiet van f voor x gaande naar a”
x→ a
punt x = a de limietwaarde L, of
lim f ( x )=L
x→ a Limiet is “naderen tot een bepaald punt en zien
Als de functiewaarden f(x) willekeurig dichter wat het beeld doet” -> bestaat alleen als linker-
bij L komen als punten x dichter naar a gaat. en rechterlimiet hetzelfde zijn!

Linkerlimiet: Als f(x) willekeurig dichter bij L komen als punten x kleiner dan a dichter naar a gaat
Rechterlimiet: Als f(x) willekeurig dichter bij L komen als punten x groter dan a dichter naar a gaat
Limieten oneigenlijke: Als f(x) oneindig stijgt of daalt als x dichter naar a gaat (oplos. is: L=+∞/+∞)


Theorie + stappenplan + voorbeelden 1

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


HA = limiet naar oneindig -> getal oplevert / VA = limiet naar getal -> oneindig oplevert
Rekenen met oneindigheden
Bepaalde vormen: Onbepaalde vormen:
+∞ ± C = +∞ -∞ ± C = -∞
+∞ . a = +∞ als a>0 -∞ . a = -∞ als a>0 0 ∞
+∞ . a = -∞ als a<0 -∞ . a = +∞ als 0
&

, +∞ - ∞, 0. ∞
a<0
+∞.+∞ = +∞ | -∞.-∞ = +∞ | +∞.-∞ = -


Continuïteit
DEF Continuïteit in een punt

Een functie f : ℝ->ℝ : x->f(x) is continu in een Indien de functiewaarde of de limietwaarde niet
punt x = a als lim f ( x )=f (a). bestaan, of indien ze verschillend zijn, noemt
x→ a men de functie discontinu in het betreffend punt.

-> indien discontinu is de 2de vraag op exame:
is de functie continu op het domein? (HC)

Belangerijke functies
DEF Veeltermfuncties

Veeltermfunctie van graad n heeft voorschrift Een veeltermfunctie heeft als domein de gehele
f : ℝ->ℝ : x->f(x) = anxn + an-1 xn-1 +…+a1x +a0 reële as en is continu ->notatie: domein ℝ

met n ∈ ℕ en met a0 , a1 ,…, an-1, an ∈ℝ en an≠0

DEF Lineaire functie (een veeltermfunctie van graad 1)
Lineaire functie heeft voorschrift f : De waarde m is de richtingcoëfficiënt of helling
ℝ->ℝ : x->f(x) = mx + q. van de functie, de waarde q bepaalt het snijpunt
Grafisch: een rechte van de beeldlijn van de functie met de y-as.

DEF Kwadratische functie = parabool (een veeltermfunctie van graad 2)
Elke vergelijking van de vorm y =ax2 + bx + c De top v/d parabool heeft coördinaten (x 0, y0)
(met a ∈ ℝ0 , b ∈ ℝ , c ∈ ℝ ) is een parabool. −b
met x0 = ; y0 is dan de functiewaarde van x0.
2. a
Grafisch: de symmetrie-as is evenwijdig aan
de y-as en heeft vergelijking x = x0. De parabool heeft de holle zijde naar boven
indien a > 0, naar beneden indien a < 0

DEF Rationale functies (2 veeltermfuncties in breuk)

Een rationale functie heeft voorschrift f : Het domein van een rationele functie is de ℝ
ℝ->ℝ : x->f(x)= verminderd met de waarde waarvoor de noemer
n n−1
an x + an−1 x +…+ a1 x +a 0 nul wordt. Een rationale functie is continu op
m m−1 haar domein. -> notatie: domein ℝ¿ {…¿}
bm x + bm−1 x + …+b1 x+b 0

met n ∈ ℕ en met a0,a1…,an,b0,b1…bm ∈ ℝ




Theorie + stappenplan + voorbeelden 2

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


DEF Irrationale functies (veeltermfunctie onder een wortel)

Een irrationale functie heeft een voorschrift Het domein v/e irrationale functie is beperkt tot
waarin 1 of meer wortelvormen voorkomen. dat deel v/d reële as waarvoor het argument
onder de wortel het juiste teken bezit (≥0).
-> notatie: domein f = ¿−∞ , …¿ ¿ ∪ ¿
DEF De cirkel
De impliciete vergelijking beschrijft een cirkel Het middelpunt van deze cirkel heeft coördinaten
(x-x0)2 + (y-y0)2 = r2 (x0, y0) (-> let op: intrepretatie + en – in formule)
En de straal is r dus √ r 2
+¿ ¿
met x0 en y0 ∈ ℝ en r2 ∈ R0 En domein is altijd = [( x0 −r ),( x0 +r )]

DEF Expontentiële functies (machten)

Exponentiële functie heeft voorschrift: expa is een strikt stijgende functie indien a>1 en
+¿ ¿
expa: ℝ-> R0 : x-> expa = ax een strikt dalende functie indien a<1

met a ∈ ℝ+\{ 0,1 } Als a<1: functie met x-as als HA aan rechterkant
+¿ ¿
(ℝ-> R0 dus oplossing altijd positief) en als a>1: functie met x-as als HA aan linkerkant

Specifiek: natuurlijke expontentiële functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie exp(x) = ex -> verloopt stijgend bcs e>1
-> p. 24 het verloop van de exponentiele functies: e x , e-x, -ex , -e-x moet je kennen!

DEF Logaritmische functies

+¿ ¿
De logaritmische functie loga is de inverse van Bereik R0 ->nooit logaritme van neg getal
de exponentiële functie expa. het voorschrift: neme!
+¿ ¿
loga: R0 ->ℝ : x-> loga (x) en w. gedifinieerd
als: Eigenschappen ook voor specifieke gevalle:
loga (x) = y <=> x = ay
loga is een strikt stijgende functie indien a>1 en
met a ∈ ℝ+\{ 0,1 } een strikt dalende functie indien a<1

bv: log2 16 = 4 want 2?=16

Specifiek: briggse logaritmische functie -> heeft grondtal 10
Notatie briggse logaritmische functie: log (x) = log10 (x)

Specifiek: natuurlijke logaritmische functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie ln(x) = loge (x) en wordt gedefinieerd als y = ln (x) <=> x = ey
-> p. 27 het verloop van de natuurlijke logaritmische functie moet je kennen!

Rekenregels logaritmen

Loga (x.y) = Loga (x) + Loga (y) ln (x.y) = ln (x) + ln (y)

Loga (x/y) = Loga (x) - Loga (y) ln (x/y) = ln (x) – ln (y)

Loga (xy) = y. Loga (x) ln (xy) = y. ln (x)



Theorie + stappenplan + voorbeelden 3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller studentmodeltraject. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.90. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.90  29x  sold
  • (6)
Add to cart
Added