100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Hoofdstuk 5: Genererende Functies

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
27-07-2022
Geschreven in
2020/2021

Dit is de samenvatting van het vijfde hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 juli 2022
Aantal pagina's
7
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 5: Genererende functies
1 Voorbeelden en definitie
Voorbeeld:
Een moeder koopt 12 snoepjes en wil die verdelen onder haar drie kinderen: Piet, Andres en Jan. Wel
zo dat Piet er minstens 4 krijgt, Andres en Jan minstens 2 en Jan hoogstens 5.

Noteren we cP , cA en cJ voor het aantal snoepjes dat Piet, Andres en Jan respectievelijk krijgen,
hebben we cP + cA + cJ = 12 en cP >= 4, cA >= 2 en 5 >= cJ >= 2.

We kunnen alle oplossingen opschrijven:




We hebben dus 12 op alle mogelijke manieren geschreven als som van drie natuurlijke getallen die
voldoen aan de voorwaarden. Dit doen we eigenlijk ook als we de distributiviteit toepassen bij het
uitwerken van volgend product van veeltermen:



De eerste factor komt overeen met het feit dat de toegelaten waarden voor cP enkel 4, 5, 6, 7 en 8
zijn. De tweede factor ontstaat uit de opmerking dat een oplossing steeds een cA zal hebben in {2, 3,
4, 5, 6}. In het product komt de coëfficiënt van x12 overeen met alle mogelijke manieren om x12 te
bekomen door een term te nemen in elk van de drie factoren. Dus is de oplossing van het vraagstuk
ook de coëfficiënt van x12 in het product van veeltermen.

Tweede voorbeeld:
We hebben grote hoeveelheden knikkers van vier kleuren : rood, groen, wit en zwart. Op hoeveel
manieren kan je 24 knikkers kiezen zo dat er een even aantal witte is en minstens 6 zwarte.

We maken een veelterm die een factor heeft voor elke kleur. Op de rode of groene knikkers is er
geen beperking : er kunnen geen, 1, 2, . . . , 17 of 18 (niet meer want minstens 6 knikkers zijn zwart)
knikkers zijn van die kleur. Dit geeft voor beide kleuren een factor (1+x+x2+· · ·+x18). De factor van de
witte knikkers bevat enkel even machten : (1+x2+x4+· · ·+x18). Aangezien er minstens 6 zwarte
knikkers zijn, krijgen we een factor (x6+x7+· · ·+x24).

Het antwoord op de vraag is dus gelijk aan de coëfficiënt van x24 in het product:




Definitie:
Zij a0, a1, a2, . . . een rij van reële getallen. De genererende functie voor die rij is per definitie


𝑓(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥 + ⋯ = ∑ 𝑎𝑖 𝑥 𝑖
2

𝑖=0




1

, Voorbeeld:
𝑛 𝑛 𝑛 𝑛 𝑛
De genererende functie van de rij ( ) , ( ) , ( ) , … , ( ) , 0,0, … is ∑𝑛𝑖=0( )𝑥 𝑖 = (1 + 𝑥)𝑛 .
0 1 2 𝑛 𝑖
Voorbeeld:
We weten zeer goed dat (1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1 , waaruit volgt

1 − 𝑥 𝑛+1
= 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛
1−𝑥
Bijgevolg is bovenstaande breuk een een genererende functie voor de rij 1,1,1,…,1,0,0… (n+1 enen).

Voorbeeld:




2 Veralgemeende binomiaalcoëfficiënten
Wat is het volgende getal in de rij 0, 2, 6, 12, 20, 30, 42 …?

Merk op dat →




2
$4.22
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lennyS Vrije Universiteit Brussel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
163
Lid sinds
5 jaar
Aantal volgers
62
Documenten
34
Laatst verkocht
2 weken geleden

4.5

6 beoordelingen

5
4
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen