Dit is de samenvatting van het vijfde hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.
Hoofdstuk 5: Genererende functies
1 Voorbeelden en definitie
Voorbeeld:
Een moeder koopt 12 snoepjes en wil die verdelen onder haar drie kinderen: Piet, Andres en Jan. Wel
zo dat Piet er minstens 4 krijgt, Andres en Jan minstens 2 en Jan hoogstens 5.
Noteren we cP , cA en cJ voor het aantal snoepjes dat Piet, Andres en Jan respectievelijk krijgen,
hebben we cP + cA + cJ = 12 en cP >= 4, cA >= 2 en 5 >= cJ >= 2.
We kunnen alle oplossingen opschrijven:
We hebben dus 12 op alle mogelijke manieren geschreven als som van drie natuurlijke getallen die
voldoen aan de voorwaarden. Dit doen we eigenlijk ook als we de distributiviteit toepassen bij het
uitwerken van volgend product van veeltermen:
De eerste factor komt overeen met het feit dat de toegelaten waarden voor cP enkel 4, 5, 6, 7 en 8
zijn. De tweede factor ontstaat uit de opmerking dat een oplossing steeds een cA zal hebben in {2, 3,
4, 5, 6}. In het product komt de coëfficiënt van x12 overeen met alle mogelijke manieren om x12 te
bekomen door een term te nemen in elk van de drie factoren. Dus is de oplossing van het vraagstuk
ook de coëfficiënt van x12 in het product van veeltermen.
Tweede voorbeeld:
We hebben grote hoeveelheden knikkers van vier kleuren : rood, groen, wit en zwart. Op hoeveel
manieren kan je 24 knikkers kiezen zo dat er een even aantal witte is en minstens 6 zwarte.
We maken een veelterm die een factor heeft voor elke kleur. Op de rode of groene knikkers is er
geen beperking : er kunnen geen, 1, 2, . . . , 17 of 18 (niet meer want minstens 6 knikkers zijn zwart)
knikkers zijn van die kleur. Dit geeft voor beide kleuren een factor (1+x+x2+· · ·+x18). De factor van de
witte knikkers bevat enkel even machten : (1+x2+x4+· · ·+x18). Aangezien er minstens 6 zwarte
knikkers zijn, krijgen we een factor (x6+x7+· · ·+x24).
Het antwoord op de vraag is dus gelijk aan de coëfficiënt van x24 in het product:
Definitie:
Zij a0, a1, a2, . . . een rij van reële getallen. De genererende functie voor die rij is per definitie
∞
𝑓(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥 + ⋯ = ∑ 𝑎𝑖 𝑥 𝑖
2
𝑖=0
1
, Voorbeeld:
𝑛 𝑛 𝑛 𝑛 𝑛
De genererende functie van de rij ( ) , ( ) , ( ) , … , ( ) , 0,0, … is ∑𝑛𝑖=0( )𝑥 𝑖 = (1 + 𝑥)𝑛 .
0 1 2 𝑛 𝑖
Voorbeeld:
We weten zeer goed dat (1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1 , waaruit volgt
1 − 𝑥 𝑛+1
= 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛
1−𝑥
Bijgevolg is bovenstaande breuk een een genererende functie voor de rij 1,1,1,…,1,0,0… (n+1 enen).
Voorbeeld:
2 Veralgemeende binomiaalcoëfficiënten
Wat is het volgende getal in de rij 0, 2, 6, 12, 20, 30, 42 …?
Merk op dat →
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller lennyS. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.76. You're not tied to anything after your purchase.