100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Mathématiques - Chapitre 2 "Espaces Vectoriels"

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
04-08-2022
Geschreven in
2021/2022

Ce fichier contient le 2ème Chapitre du cours Mathématiques.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
4 augustus 2022
Aantal pagina's
12
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Bruasse laurent
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

CHAPITRE II
LA NOTION D’ÉSPACE VECTORIEL




I. STRUCTURE D’ÉSPACE VECTORIEL

La notion d’espace vectoriel est une notion de ”structure” mathématiques comme il en existe beaucoup
d’autres : Il s’agit de reconnaître qu’un grand nombre d’objets à priori très différents (fonctions, suites,
polynômes etc ...) ont, en fait, des comportements algébriques (c’est à dire pour les opérations d’addition ...)
assez proches. On les regroupe donc dans un ”label” qui nous permettra d’énoncer des résultats qui seront
valables pour des objets à priori très différents.

(Espace vectoriel) :
Soit 𝐸 un ensemble. On dit que 𝐸 est un espace vectoriel (réel) s’il est muni de deux opérations :
- Une addition interne :
+: 𝐸 × 𝐸 → 𝐸
(𝑢(⃗, 𝑣⃗) → 𝑢 (⃗ + 𝑣⃗
- Un produit externe par un réel :
.∶ ℝ × 𝐸 → 𝐸
(𝛼, 𝑢 (⃗) → 𝛼. 𝑢 (⃗
Qui vérifient les 8 axiomes suivantes :
1. Associativité :∀𝑢 (⃗, 𝑣⃗, 𝑤
((⃗ ∈ 𝐸, 𝑢(⃗ + (𝑣⃗ + 𝑤 ((⃗) = (𝑢 (⃗ + 𝑣⃗) + 𝑤 ((⃗
2. Commutativité : :∀𝑢 (⃗, 𝑣⃗, ∈ 𝐸, 𝑢(⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 (⃗
3. Vecteur nulle : Il existe un vecteur noté 0 (⃗ 𝑡. 𝑞. ∀𝑢 (⃗, ∈ 𝐸, 0(⃗ + 𝑢(⃗ = 𝑢(⃗
4. Opposé :∀𝑢 (⃗ ∈ 𝐸 il existe un vecteur noté −𝑢 (⃗ ∈ 𝐸 𝑡. 𝑞. 𝑢 (⃗ + (−𝑢 (⃗) = (−𝑢
(⃗) + 𝑢 (⃗
(⃗ = 0
5. ∀𝛼, 𝛽 ∈ ℝ, ∀𝑢 (⃗ ∈ 𝐸, 𝛼. (𝛽. 𝑢 (⃗) = (𝛼. 𝛽). 𝑢 (⃗
6. ∀𝛼 ∈ ℝ, ∀𝑢 (⃗, 𝑣⃗ ∈ 𝐸, 𝛼. (𝑢 (⃗ + 𝑣⃗) = 𝛼. 𝑢 (⃗ + 𝛼. 𝑣⃗
7. ∀𝛼, 𝛽 ∈ ℝ, ∀𝑢 (⃗ ∈ 𝐸, (𝛼 + 𝛽). 𝑢 (⃗ = 𝛼. 𝑢(⃗ + 𝛽. 𝑢 (⃗
8. ∀𝑢 (⃗ ∈ 𝐸, 1. 𝑢(⃗ = 𝑢 (⃗
Les éléments de 𝐸 sont alors appelés des vecteurs et les réels de ℝ des scalaires.

EXEMPLES :
- L’ensemble des nombres réels (ℝ, +, ∙) ;
- Par extension l’ensemble des espaces (ℝ! , +, ∙) avec les opérations usuelles
𝑥" 𝑦" 𝑥" + 𝑦" 𝛼𝑥"
∀𝛼 ∈ ℝ, ∀𝑥⃗ = > ⋮ @ , ∀𝑦⃗ = > ⋮ @ ∈ ℝ , 𝑥⃗ + 𝑦⃗ > ⋮ @ , 𝛼. 𝑥⃗ > ⋮ @
!
𝑥! 𝑦! 𝑥! + 𝑦! 𝛼𝑥!

- L’ensemble des polynômes de degré inférieur ou égal à 𝑛 ∈ ℕ
(ℝ! [𝑋], + ∙) = ({𝑃(𝑋) = 𝑎$ + 𝑎" 𝑋 + ⋯ + 𝑎! 𝑋 ! , 𝑎% ∈ ℝ}, +,∙)
L’addition de deux polynômes se faisant en additionnant leurs coefficients degré par degré. Vérifiez que
les propriétés 1) à 8) sont bien satisfaites…
(2𝑥 & + 𝑥) + (𝑥 + 3) = 2𝑥 & + 2𝑥 + 3

, n 0 1 n…
Un U0 Un Un…
(⃗ = (0, 0, 0, … )
0
- L’ensemble des suites réelles
(ℝ' , +,∙) = ((𝑢! )!∈ℕ , +,∙)
- L’ensemble des fonctions réelles avec l’addition que vous connaissez des fonctions :
({𝑓: ℝ → ℝ}, +,∙)
Þ𝑓 + 𝑔(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
- L’ensemble de toutes les fonctions affines avec l’addition est le produit par un scalaire usuel (cf
démonstration Hayek-Leca)
- La liste est non exhaustive, on verra bientôt l’espace vectoriel des matrices réelles…

Quelques règles de calcul qui vont de soi dans les exemples mais qui sont vraies en toute généralité pour
n’importe quel espace vectoriel (elles découlent des 8 axiomes de la définition) :

PROPOSITION :
- Le vecteur nul 0 (⃗ et l’opposé −𝑢 (⃗ d’un vecteur sont uniques.
- ∀𝑢 (⃗ = (0⃗, (−1). 𝑢
(⃗ ∈ 𝐸, 0. 𝑢 (⃗ = −𝑢 (⃗
- ∀𝛼 ∈ ℝ, 𝛼. 0 (⃗ = 0(⃗
- 𝛼. 𝑥⃗ = (⃗
0 ⟺ 𝛼 = 0 𝑜𝑢 𝑥⃗ = 0 (⃗ ∈ ℝ
$6.05
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
DamienGth

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
DamienGth Aix-Marseille
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
70
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen