Soient 𝒏, 𝒌 ∈ ℕ∗
On appelle matrice (réelle) de taille 𝒏 × 𝒌 tout tableau de nombres réels de 𝒏 lignes et 𝒌 colonnes.
On notera 𝑴𝒏𝒌 l’ensemble des matrices de taille 𝒏 × 𝒌.
Soit 𝑨 ∈ 𝑴𝒏𝒌 , on notera pour tout (𝒊, 𝒋) ∈ {𝟏, . . . , 𝒏} × {𝟏, . . . , 𝒌}, 𝒂𝒊𝒋 le coefficient de la 𝒊ème ligne
et 𝒋ème colonne de 𝑨.
𝑨 = (𝒂𝒊𝒋 )𝒊&𝟏…𝒏 ; 𝒋&𝟏…𝒌
A. Opération sur les matrices
Addition de deux matrices : Soient 𝑨, 𝑩 ∈ 𝑴𝒏𝒌 , on définit la matrice 𝑨 + 𝑩 de 𝑴𝒏𝒌 par :
(𝒂 + 𝒃)𝒊𝒋 = 𝒂𝒊𝒋 + 𝒃𝒊𝒋 𝒊 = 𝟏 … 𝒏, 𝒋 = 𝟏…𝒌
EXEMLPE :
1 2 2 7 3 9
: =+: ==: =
0 −1 −1 3 −1 2
1 0 1
428 + 418 = 428
3 1 4
Produit par un scalaire : Soient 𝑨 ∈ 𝑴𝒏𝒌 et 𝝀 ∈ ℝ, on définit la matrice 𝝀. 𝑨 de 𝑴𝒏𝒌 par :
(𝝀. 𝒂)𝒊𝒋 = 𝝀 × 𝒂𝒊𝒋 𝒊 = 𝟏 … 𝒏, 𝒋 = 𝟏…𝒌
EXEMLPE :
1 3 1 2 6 2
2×: = ∈ 𝑀-+ = : = ∈ 𝑀-+
0 1 −1 0 2 −2
1 −3
(−3) × 478 ∈ 𝑀+, = 4−218 ∈ 𝑀+,
6 −18
On a alors
PROPOSITION : (𝑴𝒏𝒌 , +, ∙) est un espace vectoriel.
Notation : On notera 𝟎𝒏𝒌 le vecteur nul de 𝑴𝒏𝒌 c’est-à-dire la matrice de taille 𝒏 × 𝒌 remplie de zéros.
EXEMPLE :
0 0 5 3 5 3
: =+: ==: =
0 0 2 1 2 1
, PROPOSITION : Pour 𝒊 = 𝟏 … 𝒏, 𝒋 = 𝟏 … 𝒌 soit 𝑬𝒊𝒋 la matrice dont tous les coefficients sont nuls sauf celui
de la 𝒊ème ligne et 𝒋ème colonne qui vaut 1.
Alors O𝑬𝒊𝒋 , 𝒊 = 𝟏. . . 𝒏, 𝒋 = 𝟏. . . 𝒌P = {𝑬𝟏𝟏 , … 𝑬𝟏𝒌 , 𝑬𝟐𝟏 , … … … 𝑬𝒏𝒌 } est une base de 𝑴𝒏𝒌 .
En particulier 𝒅𝒊𝒎 𝑴𝒏𝒌 = 𝒏 × 𝒌.
EXEMPLE :
1 0 0 1 0 0 0 0
ST U,T U,T U,T UV est une base de 𝑴𝟐𝟐 .
0 0 0 0 1 0 0 1
⚠ : Le produit est plus dur à définir, on fait le produit de deux matrices de tailles différentes :
Produit de deux matrices : Soient 𝑨 ∈ 𝑴𝒏𝒌 et 𝑩 ∈ 𝑴𝒌𝒍 , on définit 𝑨𝑩 comme la matrice de 𝑴𝒏𝒍 donc le
coefficient (𝒊, 𝒋) est donné par :
𝒌
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller DamienGth. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.36. You're not tied to anything after your purchase.