lOMoARcPSD|15589855
ADVANCED CALCULUS.
SMTA 021
University of Limpopo (Turfloop Campus)
DR L. Rundora
School of Mathematical and Computer Sciences
Department of Mathematics and Applied Mathematics
University of Limpopo (Turfloop Campus)
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
Contents
1 Limits: A Review 1
1.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limits: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Limits of Indeterminate Type 6
2.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 6
2.2 Limits of Indeterminate Type . . . . . . . . . . . . . . . . . . . . 6
2.2.1 L’Hospital’s Rules . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Other Indeterminate forms . . . . . . . . . . . . . . . . . . 11
3 Sequences 14
3.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 14
3.2 Properties of convergent sequences . . . . . . . . . . . . . . . . . 16
3.2.1 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The Bolzano-Weierstrass Theorem . . . . . . . . . . . . . . . . . . 25
4 Infinite series: Convergence and Divergence 29
4.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 29
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Tests for Convergence and divergence . . . . . . . . . . . . . . . . 34
4.3.1 Comparison test . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 The ratio test . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Alternating Series Test . . . . . . . . . . . . . . . . . . . . 41
4.3.5 The nth root test . . . . . . . . . . . . . . . . . . . . . . . 44
5 Power Series 48
5.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 48
5.2 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Taylor and Maclaurin Series . . . . . . . . . . . . . . . . . . . . . 51
6 Limits and Continuity 55
6.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 55
6.2 Limits of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
i
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
6.2.1 Characterization of limits of functions in terms of conver-
gence of sequences . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1 Some properties of continuous functions . . . . . . . . . . 59
7 Differentiation and Partial Differentiation 63
7.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 63
7.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.1 Inverse trigonometric functions . . . . . . . . . . . . . . . 64
7.2.2 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . 66
7.2.3 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . 69
7.2.4 Parametric Equations . . . . . . . . . . . . . . . . . . . . . 71
7.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.1 First partial derivatives . . . . . . . . . . . . . . . . . . . . 73
7.3.2 Second partial derivatives . . . . . . . . . . . . . . . . . . 75
7.3.3 Applications: Differentials . . . . . . . . . . . . . . . . . . 77
8 Integration 81
8.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 81
8.2 The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.1 Riemann Integrable Functions . . . . . . . . . . . . . . . . 84
8.2.2 Properties of the Riemann integral . . . . . . . . . . . . . 85
8.2.3 The fundamental theorem of integral calculus . . . . . . . 87
8.3 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.1 The Double integral . . . . . . . . . . . . . . . . . . . . . 88
8.3.2 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.3 Transformations of multiple integrals . . . . . . . . . . . . 92
8.4 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5 Surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.5.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . 100
9 Ordinary differential equations 106
9.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 106
9.2 Basic concepts and definitions . . . . . . . . . . . . . . . . . . . . 107
9.3 Types of first order differential equations . . . . . . . . . . . . . . 108
9.3.1 Equations with separable variables . . . . . . . . . . . . . 108
ii
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
9.3.2 Equations reducible to variables separable type . . . . . . 112
9.3.3 Homogeneous equations . . . . . . . . . . . . . . . . . . . 114
9.3.4 Linear differential equations . . . . . . . . . . . . . . . . . 117
9.4 Second order linear differential equations with constant coefficients 120
9.4.1 Homogeneous equations of first order . . . . . . . . . . . . 120
9.4.2 Homogeneous equations of second order . . . . . . . . . . . 120
iii
Downloaded by Riley Singh ()
ADVANCED CALCULUS.
SMTA 021
University of Limpopo (Turfloop Campus)
DR L. Rundora
School of Mathematical and Computer Sciences
Department of Mathematics and Applied Mathematics
University of Limpopo (Turfloop Campus)
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
Contents
1 Limits: A Review 1
1.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limits: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Limits of Indeterminate Type 6
2.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 6
2.2 Limits of Indeterminate Type . . . . . . . . . . . . . . . . . . . . 6
2.2.1 L’Hospital’s Rules . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Other Indeterminate forms . . . . . . . . . . . . . . . . . . 11
3 Sequences 14
3.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 14
3.2 Properties of convergent sequences . . . . . . . . . . . . . . . . . 16
3.2.1 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The Bolzano-Weierstrass Theorem . . . . . . . . . . . . . . . . . . 25
4 Infinite series: Convergence and Divergence 29
4.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 29
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Tests for Convergence and divergence . . . . . . . . . . . . . . . . 34
4.3.1 Comparison test . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 The ratio test . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Alternating Series Test . . . . . . . . . . . . . . . . . . . . 41
4.3.5 The nth root test . . . . . . . . . . . . . . . . . . . . . . . 44
5 Power Series 48
5.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 48
5.2 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Taylor and Maclaurin Series . . . . . . . . . . . . . . . . . . . . . 51
6 Limits and Continuity 55
6.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 55
6.2 Limits of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
i
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
6.2.1 Characterization of limits of functions in terms of conver-
gence of sequences . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1 Some properties of continuous functions . . . . . . . . . . 59
7 Differentiation and Partial Differentiation 63
7.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 63
7.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.1 Inverse trigonometric functions . . . . . . . . . . . . . . . 64
7.2.2 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . 66
7.2.3 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . 69
7.2.4 Parametric Equations . . . . . . . . . . . . . . . . . . . . . 71
7.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.1 First partial derivatives . . . . . . . . . . . . . . . . . . . . 73
7.3.2 Second partial derivatives . . . . . . . . . . . . . . . . . . 75
7.3.3 Applications: Differentials . . . . . . . . . . . . . . . . . . 77
8 Integration 81
8.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 81
8.2 The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.1 Riemann Integrable Functions . . . . . . . . . . . . . . . . 84
8.2.2 Properties of the Riemann integral . . . . . . . . . . . . . 85
8.2.3 The fundamental theorem of integral calculus . . . . . . . 87
8.3 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.1 The Double integral . . . . . . . . . . . . . . . . . . . . . 88
8.3.2 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.3 Transformations of multiple integrals . . . . . . . . . . . . 92
8.4 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5 Surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.5.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . 100
9 Ordinary differential equations 106
9.1 What this Unit is all About . . . . . . . . . . . . . . . . . . . . . 106
9.2 Basic concepts and definitions . . . . . . . . . . . . . . . . . . . . 107
9.3 Types of first order differential equations . . . . . . . . . . . . . . 108
9.3.1 Equations with separable variables . . . . . . . . . . . . . 108
ii
Downloaded by Riley Singh ()
, lOMoARcPSD|15589855
9.3.2 Equations reducible to variables separable type . . . . . . 112
9.3.3 Homogeneous equations . . . . . . . . . . . . . . . . . . . 114
9.3.4 Linear differential equations . . . . . . . . . . . . . . . . . 117
9.4 Second order linear differential equations with constant coefficients 120
9.4.1 Homogeneous equations of first order . . . . . . . . . . . . 120
9.4.2 Homogeneous equations of second order . . . . . . . . . . . 120
iii
Downloaded by Riley Singh ()