100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary CH11 earth portrait of a planet $3.27   Add to cart

Summary

Summary CH11 earth portrait of a planet

4 reviews
 489 views  2 purchases
  • Course
  • Institution
  • Book

Chapter 12 Crags Cracks and Crumples; Crustal deformation and mountain building. INCL de aantekeningen van het college (deels in nederlands)

Preview 2 out of 8  pages

  • Unknown
  • December 20, 2015
  • 8
  • 2015/2016
  • Summary

4  reviews

review-writer-avatar

By: fenixfigueroa43 • 2 year ago

review-writer-avatar

By: maureenvdvalk • 6 year ago

review-writer-avatar

By: jeroenvanderstelt • 6 year ago

review-writer-avatar

By: cpei • 6 year ago

avatar-seller
Chapter 11: Crustal deformation and mountain building
Mountain building, or orogeny, the process of forming a mountain belt, not only raises the surface of the
crust, a process called uplift, but it also causes rocks to undergo deformation, a process by which rocks
bend, break or flow in response to stress (compression, tension or shearing). Deformation yields joints
(cracks), faults (fractures on which one body of rock slides past another) , folds (bends, cures or wrinkles
of rock layers) and foliations (a new fabric or layering in rock).




Joints Faults Folds
11.2 Rock deformation in the Earths’
crust
Deformation and strain
Deformation includes the (one of the) following: change in location(displacement), change
in orientation(rotation) and change in shape(distortion). Rotation occurs when a body of
rock undergoes tilting. Distorting occurs when rock changes shape. The development of a
fold represents one type of distortion. The measure of the distortion is called strain.
- Stretching: layer becomes longer
-Shortening: layer becomes shorter
-Shear strain= angles between features in the rock change

Brittle versus plastic deformation
Foliation
Brittle deformation: the cracking and fracturing of a material subjected to stress. Plastic deformation:
objects change shape without visibly breaking. During brittle deformation, large numbers of bonds break
and stay broken, leading to the formation of a permanent crack across which material no longer connects.
During plastic deformation, some bonds break but new ones quickly form. In this way the atoms within
grains rearrange and the grains change shape without permanent cracks forming.
The behavior of rock depends on:
-Temperature (warmer rock tend to deform plastically whereas colder rocks tend to deform brittle.
-Pressure (Under great pressures deep in the Earth, rock behaves more plastically)
-Deformation rate: A sudden change in shape causes brittle deformation whereas a slow change in shape
causes plastic deformation.
-Composition: some rock types are softer than others
The depth at which the change in behavior (plastic/brittle) takes place is called the brittle-plastic
transition. Earthquakes in continental crust happen only above this depth because the earthquakes involve
brittle breaking.
Force stress and the causes of deformation

, We define the stress action on a plane as the force applied per unit area of the plane. During mountain
building, the force of one plate interacting with another applies across the broad area of contact between
the two plates, so the deformation resulting at any specific location actually reflects the stress developed
at that location, not on the total force produced by the plate interaction.
Pressure refers to a special stress condition that happens when the same push acts on all sides of an
object.
NOTE: stress specifically refers to the amount of force applied per unit area of the rock, whereas strain
specifically refers to a change in shape of rock.
11.3 Brittle structures
Joints
We refer to natural cracks as joints. Rock bodies do not slide past each other on joints. Since joints are
roughly planar structures, we define their orientation by their strike and dip. To describe the orientation of
a geologic structure, geologists picture the structure as a simple geometric shape, then specify the angles
that the shape makes with respect to a horizontal plane, a vertical
plane and the north direction.
Strike (strekking)= The strike is the angle between an imaginary
horizontal line on the structure and the direction to the true
north.
Dip= The dip is the angle of the structure’s slope- more precisely
it is the angle between a horizontal plane and the dip line an
imaginary line parallel to the steepest slope on the structure) as
measured in a vertical plane perpendicular to the strike
Joints develop in response to tensile stress in brittle rock:
- Rock cools and contracts
- Rock formerly at depth undergoes a decrease in pressure
as overlying rock erodes away and thus change shape by expanding vertically and contracting
horizontally.
- When brittle rock layers bend
Systematic joints are long planar cracks that occur fairly regularly through a rock body whereas
nonsystematic joints are short cracks that occur in a range of orientations, are randomly spaced, and may
be irregular or curved.
A group of systematic joints is called a joint set.
If groundwater seeps through joints underground for a long period of time, minerals such as quartz or
calcite may precipitate and fill the joints. Such mineral-filled joints are a type of vein and look like white
stripes cutting across a body of rock.
Faults: surfaces to slip
A fault is a fracture on which sliding occurs and slip events, or faulting, can generate earthquakes. Faults
are like joints more or less planar structures so we represent their orientation by strike and dip. Some
intersect the ground surface while others are at depth, called blind faults. Geologistst refer to the
intersection of a fault with the land surface as fault trace or fault line. Fault classification focusus on two
characteristics of faults: (1) the dip, or slope (2) the shear sense across the fault – direction of the material
on one side of the fault moved relative to the material on the other side.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Steentje. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.27. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

81113 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.27  2x  sold
  • (4)
  Add to cart