100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Summary Exponents and their rules! $6.03
In winkelwagen

Samenvatting

Summary Exponents and their rules!

 0 keer verkocht
  • Vak
  • Instelling

These documents contain a detailed set of notes on exponents, it includes a table of rules that summarises all the rules of exponents. There are 2 practice documents to assist with practice.

Laatste update van het document: 2 jaar geleden

Voorbeeld 4 van de 16  pagina's

  • 2 september 2022
  • 2 september 2022
  • 16
  • 2022/2023
  • Samenvatting
  • 200
avatar-seller
OpenStax-CNX module: m38375 1




Products and Factors - Grade 10
*
[CAPS]

Free High School Science Texts Project

Based on Products and Factors„ by
Rory Adams
Free High School Science Texts Project
Mark Horner
Heather Williams
This work is produced by OpenStax-CNX and licensed under the
Creative Commons Attribution License 3.0




1 Introduction
In this chapter you will learn how to work with algebraic expressions. You will recap some of the work
on factorisation and multiplying out expressions that you learnt in earlier grades. This work will then be
extended upon for Grade 10.

2 Recap of Earlier Work
The following should be familiar. Examples are given as reminders.

2.1 Parts of an Expression
Mathematical expressions are just like sentences and their parts have special names. You should be familiar
with the following names used to describe the parts of a mathematical expression.

a · x k + b · x + cm = 0
(1)
d · yp + e · y + f ≤ 0


* Version 1.3: Jun 12, 2011 6:24 pm -0500
„ http://cnx.org/content/m31483/1.3/
http://creativecommons.org/licenses/by/3.0/




http://cnx.org/content/m38375/1.3/

,OpenStax-CNX module: m38375 2




Name Examples (separated by commas)
term a · xk ,b · x, cm , d · y p , e · y , f
expression a · x k + b · x + cm , d · y p + e · y + f
coe
cient a, b, d, e
exponent (or index) k, p
base x, y , c
constant a, b, c, d, e, f
variable x, y
equation a · x k + b · x + cm = 0
inequality d · yp + e · y + f ≤ 0
binomial expression with two terms
trinomial expression with three terms
Table 1


2.2 Product of Two Binomials
A binomial is a mathematical expression with two terms, e.g. (ax + b) and (cx + d). If these two binomials
are multiplied, the following is the result:

(a · x + b) (c · x + d) = (ax) (c · x + d) + b (c · x + d)
= (ax) (cx) + (ax) d + b (cx) + b · d (2)
= ax2 + x (ad + bc) + bd

Exercise 1: Product of two binomials (Solution on p. 13.)
Find the product of (3x − 2) (5x + 8)
The product of two identical binomials is known as the square of the binomial and is written as:
2
(ax + b) = a2 x2 + 2abx + b2 (3)
If the two terms are ax + b and ax − b then their product is:

(ax + b) (ax − b) = a2 x2 − b2 (4)
This is known as the dierence of two squares.

2.3 Factorisation
Factorisation is the opposite of expanding brackets. For example expanding brackets would require 2 (x + 1)
to be written as 2x + 2. Factorisation would be to start with 2x + 2 and to end up with 2 (x + 1). In
previous grades, you factorised based on common factors and on dierence of squares.




http://cnx.org/content/m38375/1.3/

,OpenStax-CNX module: m38375 3




2.3.1 Common Factors
Factorising based on common factors relies on there being common factors between your terms. For example,
2x − 6x2 can be factorised as follows:

2x − 6x2 = 2x (1 − 3x) (5)


2.3.1.1 Investigation : Common Factors
Find the highest common factors of the following pairs of terms:

(a) 6y; 18x (b) 12mn; 8n (c) 3st; 4su (d) 18kl; 9kp (e) abc; ac
(f) 2xy; 4xyz (g) 3uv; 6u (h) 9xy; 15xz (i) 24xyz; 16yz (j) 3m; 45n
Table 2


2.3.2 Dierence of Two Squares
We have seen that:

(ax + b) (ax − b) = a2 x2 − b2 (6)
Since (6) is an equation, both sides are always equal. This means that an expression of the form:

a2 x2 − b2 (7)
can be factorised to

(ax + b) (ax − b) (8)
Therefore,

a2 x2 − b2 = (ax + b) (ax − b) (9)
For example, x2 −16 can be written as x2 − 42 which is a dierence of two squares. Therefore, the factors


of x2 − 16 are (x − 4) and (x + 4).
Exercise 2: Factorisation (Solution on p. 13.)
Factorise completely: b2 y 5 − 3aby 3
Exercise 3: Factorising binomials with a common bracket (Solution on p. 13.)
Factorise completely: 3a (a − 4) − 7 (a − 4)
Exercise 4: Factorising using a switch around in brackets (Solution on p. 13.)
Factorise 5 (a − 2) − b (2 − a)




http://cnx.org/content/m38375/1.3/

, OpenStax-CNX module: m38375 4




2.3.2.1 Recap
1. Find the products of:

(a) 2y (y + 4) (b) (y + 5) (y + 2) (c) (y + 2) (2y + 1)
(d) (y + 8) (y + 4) (e) (2y + 9) (3y + 1) (f) (3y − 2) (y + 6)
Table 3

Click here for the solution1
2. Factorise:
a. 2l + 2w
b. 12x + 32y
c. 6x2 + 2x + 10x3
d. 2xy 2 + xy 2 z + 3xy
e. −2ab2 − 4a2 b
Click here for the solution2
3. Factorise completely:

(a) 7a + 4 (b) 20a − 10 (c) 18ab − 3bc
(d) 12kj + 18kq (e) 16k2 − 4k (f) 3a2 + 6a − 18
(g) −6a − 24 (h) −2ab − 8a (i) 24kj − 16k2 j
(j) −a2 b − b2 a (k) 12k2 j + 24k2 j 2 (l) 72b2 q − 18b3 q 2
(m) 4 (y − 3) + k (3 − y) (n) a (a − 1) − 5 (a − 1) (o) bm (b + 4) − 6m (b + 4)
(p) a2 (a + 7) + a (a + 7) (q) 3b (b − 4) − 7 (4 − b) (r) a2 b2 c2 − 1
Table 4

Click here for the solution3


3 More Products
Khan Academy video on products of polynomials.
This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/fGThIRpWEE4&rel=0>

Figure 9



We have seen how to multiply two binomials in "Product of Two Binomials" (Section 2.2: Product of Two
Binomials). In this section, we learn how to multiply a binomial (expression with two terms) by a trinomial
1 http://www.fhsst.org/lxI
2 http://www.fhsst.org/lqV
3 http://www.fhsst.org/lqE




http://cnx.org/content/m38375/1.3/

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper kiaraparsad23. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $6.03. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 76388 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$6.03
  • (0)
In winkelwagen
Toegevoegd