100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Matrix Algebra (FEB21019) $7.50
Add to cart

Summary

Samenvatting Matrix Algebra (FEB21019)

 2 purchases
  • Course
  • Institution

Uitgebreide samenvatting van Matrix Algebra (econometrie EUR)

Preview 2 out of 9  pages

  • September 4, 2022
  • 9
  • 2019/2020
  • Summary
avatar-seller
Week 1
Vergelijkingen oplossen
m vergelijkingen met n variabele
1. Elimineer 1 variabele en 1 vergelijking
2. Doorgaan tot 1 vergelijking en n – m + 1 variabelen
3. Kies n – m van de n – m + 1 variabelen vrij
4. Achterstevoren oplossen, er zijn n – m vrij variabelen in de oplossing
Vectoren
Elke vector v Î Rn is [𝑣! , 𝑣" , … , 𝑣# ]
Regels vectoren
𝑢 + 𝑣 = [𝑢! + 𝑣! , 𝑢" + 𝑣" , … , 𝑢# + 𝑣# ]
𝑐𝑣 = [𝑐𝑣! , 𝑐𝑣" , … , 𝑐𝑣# ]
(𝑐 + 𝑑)𝑢 = 𝑐𝑢 + 𝑑𝑢
𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣
𝑢 ∙ (𝑣 + 𝑤) = 𝑢 ∙ 𝑣 + 𝑢 ∙ 𝑤
(𝑐𝑢) ∙ 𝑣 = 𝑐(𝑢 ∙ 𝑣)
Lineaire combinatie
𝑣 = 𝑐! 𝑣! + 𝑐" 𝑣" + ⋯ + 𝑐# 𝑣#
Dot product
𝑢 ∙ 𝑣 = [𝑢! 𝑣! + 𝑢" 𝑣" + ⋯ + 𝑢# 𝑣# ]
Lengte
0|𝑣|0 = √𝑣 ∙ 𝑣 = 3𝑣! " + 𝑣" " + ⋯ + 𝑣# " 0|𝑣|0 = 0 ⇔ 𝑣 = 0
"
𝑣 ∙ 𝑣 = 0|𝑣|0
Scalair vermenigvuldigen
0|𝑐𝑣|0 = |𝑐|0|𝑣|0
Eenheidsvector
0|𝑣|0 = 1 dan v is eenheidsvector (𝑢)
!
𝑎𝑙𝑠 𝑣 ≠ 0 𝑑𝑎𝑛 𝑢 = 𝑣
||%||
Standaard eenheidsvectoren
Een vector e1, e2, … , en die ei 1 heeft als component en voor de rest alleen maar nullen
Cauchy-Schwarz ongelijkheid
|𝑣 ∙ 𝑢| ≤ 0|𝑢|00|𝑣|0
Driehoeksongelijkheid
0|𝑢 + 𝑣|0 ≤ 0|𝑢|0 + 0|𝑣|0
Afstand
𝑑(𝑢, 𝑣) = 0|𝑢 − 𝑣|0
Hoek tussen 2 vectoren
&∙%
cos(𝜃) = (|&|((|%|(
Orthogonaal (loodrecht)
𝑢∙𝑣 =0
Pythagoras
" " "
0|𝑢 + 𝑣|0 = 0|𝑢|0 + 0|𝑣|0 𝑎𝑙𝑠 𝑢 ∙ 𝑣 = 0
Projectie van v op u
&∙%
𝑝𝑟𝑜𝑗& (𝑣) = &∙& 𝑢
Lijnen in R2
ax + by = c is hetzelfde als [𝑎, 𝑏][𝑥, 𝑦] = 𝑐
[a,b] staat loodrecht op de lijn en is de normaalvector
Normale vorm van een vergelijking van een lijn in R2
n × (x – p) = 0 of n × x = n × p met p een punt op lijn l en n de normaalvector

, Vectorvoorstelling van een vergelijking van een lijn in R2 of R3
x = p + td
Vlakken in R3
ax + by + cz = d is hetzelfde als [a,b,c][x,y,z] = d
Normale vorm van een vergelijking van een vlak P in R3
n × (x – p) = 0 of n × x = n × p met p een punt op vlak P en n de normaalvector van P
Vectorvoorstelling van een vergelijking van een vlak P in R3
x = p + su + tv
Afstand van een punt tot een lijn
𝐵 = (𝑥) , 𝑦) ) 𝑒𝑛 𝑎𝑥 + 𝑏𝑦 = 𝑐
|*+ ,-. /0|
𝑑(𝐵, 𝑙) = ! " !"
√* ,-
Afstand van een punt tot een vlak
𝐵 = (𝑥) , 𝑦) , 𝑧) ) 𝑒𝑛 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑
|*+ ,-. ,02 /3|
𝑑(𝐵, 𝑙) = ! " ! " !"
√* ,- ,0


Week 2
Lineaire vergelijking
𝑎! 𝑥! + 𝑎" 𝑥" + ⋯ + 𝑎# 𝑥# = 𝑏 met ai en b als constante
Oplossingen voor een lineaire vergelijking
o Unieke oplossing (consistent)
o Oneindig veel oplossingen (consistent)
o Geen oplossingen (inconsistent)
Rij echelon vorm
1. Elke rij dat alleen nullen bevat staan onderaan in de matrix en
2. In elke niet-nul rij, staat de eerste niet-nul (leidend element) in een kolom links van het
leidend element van de rijen eronder
Gereduceerde rij echelon vorm
3. Elk leidend element is een 1 en de getallen in de kolom boven het leidend element 0
Elementaire rij operaties
1. Wisselen van 2 rijen 𝑅4 ↔ 𝑅5
2. Rij vermenigvuldigen met een niet-nul 𝑘𝑅4
3. Een vermenigvuldiging van een rij optellen bij een andere rij 𝑅4 + 𝑘𝑅5
Rij equivalente matrices
A en B zijn rij equivalent als er elementaire rij operaties bestaan dat A naar B omzet
A en B zijn rij equivalent Û ze gereduceerd kunnen worden naar dezelfde rij echelon vorm
Gauss eliminatie
1. Schrijf de lineaire vergelijkingen op als een uitgebreide matrix
2. Gebruik elementaire rij operaties om de matrix te reduceren naar rij echelon vorm
3. Gebruik achterwaartse substitutie om de matrix op te lossen
Gaus-Jordan eliminatie
1. Schrijf de lineaire vergelijkingen op als een uitgebreide matrix
2. Gebruik elementaire rij operaties om de matrix te reduceren naar gereduceerde rij
echelon vorm
3. Schrijf de leidende variabelen in termen van de vrije variabelen
Rang van een matrix
Het aantal niet-nul rijen van een matrix in rij echelon vorm
Aantal vrij variabelen = n – rank(A)
Homogeen stelsel
Een stelsel waarvan elke vergelijking rechterlid 0 heeft

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LeonVerweij. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.50. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

64450 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.50  2x  sold
  • (0)
Add to cart
Added