100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Calculus (CSE1200) TU Delft

Beoordeling
-
Verkocht
-
Pagina's
18
Geüpload op
07-09-2022
Geschreven in
2018/2019

A summary of the course Calculus (CSE1200) of TU Delft, part of the bachelor Computer Science and Engineering.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
7 september 2022
Bestand laatst geupdate op
8 september 2022
Aantal pagina's
18
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Overview calculus midterm:
• Lecture 1a: Inverse Functions and Logarithms (§1.5)
• Lecture 1b: Limits and continuity (§2.2, §2.3 and §2.5)
• Lecture 1c: Limits at infinity (§2.6)
• Lecture 2a: The Chain Rule and Implicit differentiation (§3.4 and §3.5)
• Lecture 2b: Linearization and differentials (§3.10)
• Lecture 2c: L’Hospital’s Rule (§4.4)
• Lecture 3a: The Substitution Rule (§5.5)
• Lecture 3b: Integration by parts (§7.1)
• Lecture 3c: Improper Integrals (§7.8)
• Lecture 4a: Sequences (§11.1)
• Lecture 4b: Series (§11.2)
• Lecture 4c: The Integral Test and Estimates of Sums (§11.3) + Alternating series (§11.5)
• Lecture 5a: Absolute Convergence and the Ration and Root Tests (§11.6, skip Root test)
• Lecture 5b: Power Series (§11.8)
• Lecture 6a: Functions as power series (§11.9)
• Lecture 6b: Taylor series (§11.10)
• Lecture 7a: Complex numbers part 1 (Appendix H)
• Lecture 7b: Complex numbers part 2, vectors and dot product (Appendix H, §12.2, §12.3)
• Lecture 7c: Functions of several variables (§14.1)
• Lecture 8a: Partial derivatives and linearization (§14.3, §14.4)
• Lecture 8b: The directional derivative (§14.6)
• Lecture 8c: Minimum and maximum values (§14.7)
• Lecture 9a: Double integrals over rectangles (§15.1)
• Lecture 9b: Double integrals over simple regions (§15.2)

,Lecture 1a: Inverse Functions and Logarithms (§1.5)
• Find the maximal domain and range of a function.
• Find the inverse of a one-to-one function.
• Simplify expressions involving (inverses of) trigonometric functions.

Definition of a function: a map from one set (𝐴) to another (𝐵) denoted by 𝑓: 𝐴 → 𝐵
A function is a relation from 𝐴 (domain) to 𝐵 (codomain) that satisfies 2 conditions.
1. Every element of 𝐴 has to map to an element of 𝐵.
2. No element of 𝐴 maps to more than one element of 𝐵.

A function 𝑓 is called a one-to-one function if it never takes on the same value twice; that is,
𝑥! ≠ 𝑥" → 𝑓(𝑥! ) ≠ 𝑓(𝑥" )
𝑓(𝑥! ) = 𝑓(𝑥" ) → 𝑥! = 𝑥"
A function is one-to-one if and only if no horizontal line intersects the graph more than once.

Let 𝑓 be a one-to-one function with domain 𝐴 and range 𝐵. Then its inverse function 𝑓 #! has
domain 𝐵 and range 𝐴 and is defined by 𝑓 #! (𝑦) = 𝑥 ↔ 𝑓(𝑥) = 𝑦 for any 𝑦 in 𝐵.
The graph of 𝑓 #! is obtained by reflecting the graph of 𝑓 about the line 𝑦 = 𝑥

Domain of 𝑓 #! = range of 𝑓
Range of 𝑓 #! = domain of 𝑓

How to find the inverse function of a one-to-one function 𝑓
1. Write 𝑦 = 𝑓(𝑥)
2. Solve this equation for 𝑥 in terms of 𝑦 (if possible)
3. To express 𝑓 #! as a function of 𝑥, interchange 𝑥 and 𝑦.

To find the inverse trigonometric functions we have to restrict the domains of the trigonometric
functions so that they become one-to-one.
Function Inverse Restricted domain
sin(𝑥) = 𝑦 𝑠𝑖𝑛 #! (𝑦)
= arcsin (𝑦) = 𝑥 𝜋 𝜋
− ≤𝑥≤
2 2
cos(𝑥) = 𝑦 𝑐𝑜𝑠 #! (𝑦) = arccos(𝑦) = 𝑥 0≤𝑥≤𝜋
tan(𝑥) = 𝑦 𝑡𝑎𝑛#! (𝑦) = arctan(𝑦) = 𝑥 𝜋 𝜋
− <𝑥<
2 2

Kind of questions:
!
1. What is 𝑎𝑟𝑐𝑜𝑠(− ")
$
2. Simplify cos (arcsin D%E)
3. Find a rational expression of cos (arctan(𝑥))

, Lecture 1b: Limits and Continuity (§2.2, §2.3, §2.5)
• Evaluate a limit of a function at a point.
• Apply rules of calculation for limits (in particular the Squeeze Theorem)

Suppose 𝑓(𝑥) is defined when 𝑥 is near the number 𝑎. Then we write 𝐥𝐢𝐦 𝒇(𝒙) = 𝑳 and say “the
𝒙→𝒂
limit of 𝑓(𝑥), as 𝑥 approaches 𝑎, equals 𝐿” if we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿
by restricting 𝑥 to be sufficiently close to 𝑎, but not equals to 𝑎.

We write 𝐥𝐢𝐦! 𝒇(𝒙) = 𝑳 and say the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 from the left is equal to 𝐿 if we
𝒙→𝒂
can make the values of 𝑓(𝑥) arbitrarily close to 𝐿 by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥 less
than 𝑎.

We write 𝐥𝐢𝐦" 𝒇(𝒙) = 𝑳 and say the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 from the right is equal to 𝐿 if
𝒙→𝒂
we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿 by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥
greater than 𝑎.

lim 𝑓(𝑥) = 𝐿 if and only if lim! 𝑓(𝑥) = 𝐿 and lim" 𝑓(𝑥) = 𝐿
)→* )→* )→*

Suppose that lim 𝑓(𝑥) and lim 𝑔(𝑥) exist. Then
)→* )→*
1. lim P𝑓(𝑥) + 𝑔(𝑥)R = lim 𝑓(𝑥) + lim 𝑔(𝑥)
)→* )→* )→*
2. lim P𝑓(𝑥) − 𝑔(𝑥)R = lim 𝑓(𝑥) − lim 𝑔(𝑥)
)→* )→* )→*
3. lim 𝑐𝑓(𝑥) = 𝑐 lim 𝑓(𝑥)
)→* )→*
4. lim 𝑓(𝑥)𝑔(𝑥) = lim 𝑓(𝑥) ∗ lim 𝑔(𝑥)
)→* )→* )→*
+()) /01 +())
5. lim .()) = #→%
/01 .())
if lim 𝑔(𝑥) ≠ 0
)→* #→%
)→*
If 𝑓 is a polynomial or a rational function and 𝑎 is in the domain of 𝑓, then lim 𝑓(𝑥) = 𝑓(𝑎)
)→*


The Squeeze Theorem: if 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) when 𝑥 is near 𝑎 (except possibly at 𝑎) and
lim 𝑓(𝑥) = lim ℎ(𝑥) = 𝐿 then lim 𝑔(𝑥) = 𝐿
)→* )→* )→*


A function 𝑓 is continuous at a number 𝑎 if lim 𝑓(𝑥) = 𝑓(𝑎), this requires three things.
)→*
1. 𝑓(𝑎) is defined (that is, 𝑎 is in the domain of 𝑓)
2. lim 𝑓(𝑥) exists
)→*
3. lim 𝑓(𝑥) = 𝑓(𝑎)
)→*


Lecture 1c: Limits at Infinity (§2.6)
• Evaluate a limit of a function at ±∞.
• Find horizontal and vertical asymptotes of a function.

Let 𝑓 be a function defined on some interval (𝑎, ∞). Then lim 𝑓(𝑥) = 𝐿 means that the values of
)→2
𝑓(𝑥) can be made arbitrarily close to 𝐿 by requiring 𝑥 to be sufficiently large.
Let 𝑓 be a function defined on some interval (−∞, 𝑎). Then lim 𝑓(𝑥) = 𝐿 means that the values of
)→#2
𝑓(𝑥) can be made arbitrarily close to 𝐿 by requiring 𝑥 to be sufficiently large negative.

The line 𝑦 = 𝐿 is called a horizontal asymptote of the curve 𝑦 = 𝑓(𝑥) if either lim 𝑓(𝑥) = 𝐿
)→2
or lim 𝑓(𝑥) = 𝐿
)→#2


The Squeeze Theorem also applies on limits to infinity.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sachakorte Erasmus Universiteit Rotterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
21
Lid sinds
4 jaar
Aantal volgers
18
Documenten
16
Laatst verkocht
1 maand geleden

4.0

4 beoordelingen

5
2
4
0
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen