100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Formularium algemene fysica $10.26
Add to cart

Summary

Samenvatting Formularium algemene fysica

 1 purchase
  • Course
  • Institution

Samenvatting van alle formules uit de cursus algemene fysica.

Preview 4 out of 40  pages

  • September 14, 2022
  • 40
  • 2021/2022
  • Summary
avatar-seller
1


Hoofdstuk 2: 1-dim kinematica
Verplaatsing:
∆𝑥 = 𝑥𝑓 − 𝑥𝑖 ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 [m]
𝑥𝑓 = 𝑓𝑖𝑛𝑎𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥𝑖 = 𝑖𝑛𝑖𝑡𝑖ë𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]


Gemiddelde snelheid:
∆𝑥 𝑥𝑓 − 𝑥𝑖 𝑣𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣𝑎𝑣 = =
∆𝑡 𝑡𝑓 − 𝑡𝑖 ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑠𝑖𝑛𝑔 [m]
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke snelheid:
∆𝑥 𝑑𝑥 𝑣 = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣 = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑥
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑥(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

Gemiddelde versnelling
Δ𝑣 𝑣𝑓 − 𝑣𝑖 𝑎𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑎𝑎𝑣 = =
Δ𝑡 𝑡𝑓 − 𝑡𝑖 ∆𝑣 = 𝑣𝑒𝑟𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
∆𝑡 = 𝑣𝑒𝑟𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝑡𝑖𝑗𝑑 [s]
Ogenblikkelijke versnelling
∆𝑣 𝑑𝑣 𝑎 = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑎 = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑣
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

EVRB: snelheid
𝑣 = 𝑣0 + 𝑎 𝑡 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
EVRB: verplaatsing
1 2 𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 = 𝑥0 + 𝑣0 𝑡 + 𝑎𝑡
2 𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
EVRB: v in functie van x
𝑣 2 = 𝑣02 + 2𝑎(𝑥 − 𝑥0 ) 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑥 = 𝑓𝑖𝑛𝑎𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 − 𝑥0 = ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 [m]
Vrije val vanuit rust: positie
1 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 = 𝑔𝑡²
2 𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²
𝑡 = 𝑡𝑖𝑗𝑑 [s]

, 2




Vrije val vanuit rust: snelheid
𝑣 = 𝑔𝑡 𝑜𝑓 𝑣 = √2𝑔𝑥 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]




Vrije val na opwaartse worp: landingstijd
2𝑣0 𝑡 = 𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑡𝑖𝑗𝑑 [s]
𝑡𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑡𝑖𝑗𝑑 =
𝑔 𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑛𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²



Hoofdstuk 3: Vectoren
Scalair product/dot product van 2 vectoren
⃗⃗⃗ = |𝑣⃗|⌈𝑤
𝑣⃗ · 𝑤 ⃗⃗⃗⌉ cos 𝜃 = 𝑣𝑤 cos 𝜃 𝑣⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑣
𝑤
⃗⃗⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑤
|𝑣⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣 (𝑣𝑒𝑐𝑡𝑜𝑟 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
|𝑤
⃗⃗⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤 (𝑣𝑒𝑐𝑡𝑜𝑟 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
𝜃 = ℎ𝑜𝑒𝑘 𝑚𝑒𝑡 𝑑𝑒 𝑥 − 𝑎𝑠 [°]
Loodrechte vectoren
𝑣⃗ · 𝑤
⃗⃗⃗ = 0 𝑣⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑣
𝑤
⃗⃗⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑤
Vectorieel product van 2 vectoren
|𝐶⃗| = 𝐴𝐵 sin 𝜃 |𝐶⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐶 (𝐶 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
𝜃 = ℎ𝑜𝑒𝑘 𝑡𝑢𝑠𝑠𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴 𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐵 [°]
Gemiddelde snelheid
⃗⃗⃗⃗⃗
∆𝑟 𝑣⃗𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s]
𝑣⃗𝑎𝑣 =
∆𝑡 ⃗⃗⃗⃗⃗
∆𝑟 = ⃗⃗⃗⃗⃗
∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m]
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke snelheid
⃗⃗⃗⃗⃗
∆𝑟 𝑑𝑟⃗ 𝑣⃗ = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s]
𝑣⃗ = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 ⃗⃗⃗⃗⃗
∆𝑟 = ⃗⃗⃗⃗⃗
∆𝑥 = 𝑣𝑒𝑟𝑠𝑐ℎ𝑖𝑙 𝑖𝑛 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑛 [m]
𝑑𝑟⃗
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑖ë𝑙𝑒 𝑟(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

Gemiddelde versnellingsvector
⃗⃗⃗⃗⃗
∆𝑣 𝑎⃗𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s²]
𝑎⃗𝑎𝑣 =
∆𝑡 ⃗⃗⃗⃗⃗ = 𝑣𝑒𝑟𝑠𝑐ℎ𝑖𝑙 𝑖𝑛 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑛 [m/s]
∆𝑣
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke versnellingsvector
∆𝑣 𝑑𝑣⃗ 𝑎⃗ = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s²]
𝑎⃗ = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑣⃗⃗
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑖ë𝑙𝑒 𝑣(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

, 3




Hoofdstuk 4: 2-dim kinematica
Positie in functie van de tijd
1 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑥 − 𝑎𝑠 [m]
𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 + 𝑎𝑥 𝑡²
2 𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
1 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 + 𝑎𝑦 𝑡²
2 𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]


Snelheid in functie van de tijd
𝑣𝑥 = 𝑣0𝑥 + 𝑎𝑥 𝑡 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
𝑣𝑦 = 𝑣0𝑦 + 𝑎𝑦 𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]
Snelheid in functie van de positie
𝑣𝑥2 = 𝑣0𝑥
2
+ 2𝑎𝑥 ∆𝑥 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑦2 = 𝑣0𝑦
2
+ 2𝑎𝑦 ∆𝑦 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]
∆𝑦 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
Kogelbaan: positie in functie van de tijd (ax = 0; ay = -g)
𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
(𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 = 0) [m/s²]
𝑡 = 𝑡𝑖𝑗𝑑 [s]

, 4


1 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 − 𝑔𝑡²
2 𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9 · 81 𝑚/𝑠²


Kogelbaan: snelheid in functie van de tijd (ax = 0; ay = -g)
𝑣𝑥 = 𝑣0𝑥 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]


Kogelbaan: snelheid in functie van de positie ax = 0; ay = -g)
𝑣𝑥2 = 𝑣0𝑥
2
𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑦2 = 𝑣0𝑦
2
− 2𝑔∆𝑦 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9 · 81 𝑚/𝑠 2
∆𝑦 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
Horizontale lancering: positie in functie van de tijd (x0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑥 = 𝑣0𝑥 𝑡 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]

1
𝑦 = ℎ − 𝑔𝑡² (v0y = v0 sin 0° = 0) 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
2
𝑦0 = ℎ = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = −𝑔 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −9 · 81 𝑚/𝑠 2
Horizontale lancering : snelheid in functie van de tijd (x0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑣𝑥 = 𝑣0 − 𝑔𝑡 𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = −𝑔 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 = −9.81 𝑚/𝑠 2
𝑣𝑦 = −𝑔𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9.81 𝑚/𝑠 2
𝑡 = 𝑡𝑖𝑗𝑑 [s]
Horizontale lancering: snelheid in functie van de positie (x 0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑣𝑥2 = 𝑣0𝑥
2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller celineafroditidemunter. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.26. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

68175 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$10.26  1x  sold
  • (0)
Add to cart
Added