Tema 4
Haces de hipercuádricas. Clasificación de los haces de cónicas. Determinación de cónicas.
Recordemos que, dado un K-espacio vectorial V , el K-espacio vectorial de las formas
bilineales simétricas sobre V es denotado por BS(V ). Suponemos que la caracterı́stica
del cuerpo K es distinta de 2 y que la dimensión de V es n + 1 con n un entero positivo.
Si Q es una hipercuádrica en el espacio proyectivo X = P(V ), si R es un sistema de
referencia en X y si A es una matriz tal que MR (Q) = [A], diremos que A es una matriz
representante de Q respecto de R.
1. Definición y ecuaciones
Definición
Un haz de hipercuádricas en X es una recta del espacio proyectivo de las hiper-
cuádricas P(BS(V )).
Sean Q y Q′ dos hipercuádricas distintas de X. El haz definido por Q y Q′ se denotara
H(Q, Q′ ). Por definición, H = H(Q, Q′ ) es la recta proyectiva que pasa por los puntos Q y
Q′ . El haz H está formado por el conjunto de hipercuádricas proyectivamente linealmente
dependientes de {Q, Q′ }. Si f, f ′ ∈ BS(V ), Q = [f ] y Q′ = [f ′ ], entonces las hipercuádri-
cas de H están definidas por las formas bilineales simétricas de la forma λf + λ′ f ′ con
(λ : λ′ ) ∈ P1 (K).
Ası́, fijado un sistema de referencia R en X, el haz de hipercuádricas H es la familia de
hipercuádricas con clase-matriz, respecto de R, de la forma [λA + λ′ A′ ], donde A y A′ son
matrices representantes de Q y Q′ respecto de R.
Nota 1. De la definición se sigue inmediatamente que el haz definido por dos hipercuádri-
cas distintas de un haz H coincide con H y que dos haces H, H′ son iguales si y solo si
tienen en común dos hipercuádricas distintas.
Ejemplo. En P2 (R) se consideran las cónicas Q1 y Q2 de ecuaciones respectivas x1 x2 = 0,
x21 − x22 = 0 respecto de cierto sistema de referencia fijado. La clase matriz de una cónica
genérica del haz H(Q1 , Q2 ) está definida por
0 0 0 0 0 0 0 0 0
A = λ 0 0 1 + λ′ 0 1 0 = 0 λ′ λ
0 1 0 0 0 −1 0 λ −λ′
con (λ, λ′ ) ∈ K2 no ambos nulos.
Página 1
, ALG2. José Martı́nez Suárez
Definición
Se llama base de un haz H al conjunto
\
B(H) = L(Q)
Q∈H
Es decir al conjunto de puntos de X que pertenecen a todas las hipercuádricas-lugar
del haz H.
Nota 2. En adelante diremos que un punto P ∈ X pertenece a una hipercuádrica si P
pertenece a la hipercuádrica-lugar correspondiente.
Lema
Si H es un haz de hipercuádricas, se tiene:
B(H) = L(Q) ∩ L(Q′ )
donde Q y Q′ son dos hipercuádricas cualesquiera (distintas) del haz.
Ejemplo. Sean Q y Q′ las cónicas en P2 (R) con ecuaciones, respecto de Re , x0 (x1 −x2 ) = 0
y x2 (x0 −x1 ) = 0 respectivamente. La cónica lugar L(Q) (resp. L(Q′ )) es la reunión r1 ∪r2
(resp. s1 ∪ s2 ) siendo r1 la recta x0 = 0 y r2 la recta x1 = x2 (resp. s1 la recta x0 = x1 y
s2 la recta x2 = 0). Los puntos base del haz H(Q, Q′ ) son R0 = (1 : 0 : 0), R1 = (0 : 1 :
0), R2 = (0 : 0 : 1), R3 = (1 : 1 : 1) dado que L(Q)∩s1 = {R2 , R3 } y L(Q)∩s2 = {R0 , R1 }.
Lema
Si P ∈ X no es un punto base de un haz H, entonces existe una única hipercuádrica
Q de H que pasa por P .
Nota 3. En resumen, dado un punto P ∈ X, o está en todas las hipercuádricas de un haz
(cuando P es un punto base) o está solamente en una de ellas (cuando P no es un punto
base).
Ejemplo. Sea H el haz del ejemplo anterior. El punto P = (1 : −1 : 1) no es un
punto base del haz. Una cónica genérica del haz tiene una ecuación de la forma λx0 (x1 −
x2 ) + µx2 (x0 − x1 ) = 0, con (λ : µ) ∈ P1 (R). Esta cónica pasa por P si y sólo si
λ1(−1 − 1) + µ1(1 − (−1)) = 0. Es decir, si y sólo si −2λ + 2µ = 0 y por tanto la única
cónica del haz que pasa por P es la de ecuación x0 (x1 −x2 )+x2 (x0 −x1 ) = x1 (x0 −x2 ) = 0
(λ = µ = 1).
Definición
Un haz se dice degenerado si todas las hipercuádricas que lo componen son dege-
neradas.
Recordemos que dim(X) = n ≥ 1.
Página 2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller josemartinez_0. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.82. You're not tied to anything after your purchase.