Tema 1
El espacio proyectivo. El espacio afı́n como subespacio del proyectivo. Sistemas de
referencia. Dualidad.
1. El espacio proyectivo
Sean K un cuerpo y n ≥ 0 un entero. Se considera Kn+1 con su estructura de espacio
vectorial y se define la siguiente relación binaria en Kn+1 \{0}:
u ∼ v ⇔ ∃α ∈ K tal que u = αv
Si u ∈ Kn+1 es un vector no nulo, su clase de equivalencia se denota [u]. Se tiene por
tanto la igualdad
[u] = {αu : α ∈ K, α 6= 0}
Definición
Se llama espacio proyectivo n-dimensional definido sobre K, y se denota Pn (K),
al conjunto de las clases de equivalencia de la relación ∼, es decir
Kn+1 \{0}
Pn (K) :=
∼
Notemos que la relación ∼ es una relación de equivalencia. Los elementos de Pn (K) serán
llamados puntos.
Un punto de Pn (K) es la clase de equivalencia de un vector no nulo u = (u0 , . . . , un ). Dicha
clase de equivalencia se notará indistintamente [u], [u0 : · · · : un ], o bien (u0 : · · · : un ).
Las letras P, Q, R, . . . denotarán usualmente puntos proyectivos. Notemos que para cual-
quier escalar α no nulo y para cualquier vector u = (u0 , . . . , un ) no nulo se tiene
Además, si P = [u0 : · · · : un ] y Q = [v0 : · · · : vn ], entonces P = Q si y sólo si los vectores
(u0 , . . . , un ) y (v0 , . . . , vn ) son proporcionales.
Nota Existe una correspondencia biyectiva natural entre los siguientes conjuntos:
ρ : Pn (K) → {r ⊆ Kn+1 : r recta vectorial}
definida por ρ([u]) =< u >. Esta correspondencia biyectiva identifica los puntos de Pn (K)
con las rectas del espacio vectorial Kn+1 .
se denomina proyección natural de Kn+1 \{0} en el espacio proyectivo Pn (K).
1.1. Dependencia lineal proyectiva de puntos
Definición
Sea m ≥ 1 un entero y S = {P1 , . . . , Pm } ⊂ Pn (K). Diremos que S es un conjunto
proyectivamente linealmente independiente (resp. independiente) si, dados
v1 , . . . , vm ∈ Kn+1 cualesquiera verificando que π(vi ) = Pi , el conjunto {v1 , . . . , vm }
es linealmente dependiente (resp. independiente) en Kn+1 .
Si P ∈ Pn (K), diremos que P depende proyectivamente linealmente del conjunto S
si dados v, v1 , . . . , vm ∈ Kn+1 cualesquiera, verificando que π(v) = P, π(vi ) = Pi , el
vector v depende linealmente del conjunto {v1 , . . . , vm }.
1.2. El espacio afı́n como subespacio del espacio proyectivo
Consideremos la aplicación ϕ dada por
ϕ : An (K) −→ Pn (K)
(a1 , . . . , an ) 7−→ [1 : a1 : · · · : an ]
Se denota por Img(ϕ) la imagen de la aplicación anterior.
Proposición
La aplicación ϕ es biyectiva de An (K) en Img(ϕ).
Demostración. Sólo se necesita probar la inyectividad. Si [1 : a1 : · · · : an ] = [1 : b1 :
· · · : bn ] entonces existe un escalar α no nulo tal que (1, a1 , . . . , an ) = α(1, b1 , . . . , bn ). Esto
implica 1 = α · 1 = α. Por tanto, (a1 , . . . , an ) = (b1 , . . . , bn ).
Notemos H∞ = Pn (K)\Img(ϕ)
Proposición
Se tiene la igualdad
Img(ϕ) = {[a0 : · · · : an ] ∈ Pn (K) : a0 6= 0}
Equivalentemente, H∞ es el conjunto de puntos de Pn (K) cuya primera coordenada
es nula.
Página 2
, ALG2. José Martı́nez Suárez
Demostración. En efecto, si P = [a0 : · · · : an ] y a0 6= 0 entonces P = [1 : a1 /a0 : · · · :
an /a0 ] = ϕ(a1 /a0 , . . . , an /a0 ) ∈ Img(ϕ)
Notemos que H∞ se puede identificar con el espacio proyectivo Pn−1 (K) mediante la
aplicación biyectiva
Proposición
La aplicación biyectiva anterior preserva la dependencia e independencia lineal pro-
yectiva.
Podemos identificar, vı́a la aplicación inyectiva ϕ, el espacio afı́n An (K) con Img(ϕ) que
es el subconjunto complementario de H∞ en Pn (K), y esta identificación se usará a veces
sin mención explicita.
El siguiente diagrama resume los espacios y las relaciones entre ellos:
1.3. Dependencia lineal afı́n y dependencia lineal proyectiva
La aplicación ϕ convierte la dependencia afı́n (resp. independencia afı́n) en dependencia
proyectiva (resp. independencia proyectiva). Concretamente se tiene la siguiente proposi-
ción:
Proposición
Sea T := {P1 , . . . , Pm } un subconjunto de An (K). El conjunto T es afı́nmente
independiente si y sólo si ϕ(T ) ⊂ Pn (K) es proyectivamente independiente. Además,
si P ∈ An (K), P depende afı́nmente de T si y sólo si ϕ(P ) depende proyectivamente
de ϕ(T ).
Página 3
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller josemartinez_0. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.82. You're not tied to anything after your purchase.