100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Statistics 1B $3.23
Add to cart

Summary

Summary Statistics 1B

1 review
 145 views  0 purchase
  • Course
  • Institution

summary of the book introduction to the practice of statistics

Preview 2 out of 11  pages

  • February 1, 2016
  • 11
  • 2014/2015
  • Summary

1  review

review-writer-avatar

By: louwes • 7 year ago

avatar-seller
Statistic Chapter 16

Bootstrap Methods and Permutation Tests

 T procedures are useful in practice because they are robust
 Inference about spread based on Normal distributions is not
robust and therefore of little use in practice
 “what would happen if we applied this method many times?”
 bootstrap interval and permutation tests are conceptually
simple because they appeal directly to the basis of all
inference: the sampling distribution that shows what would
happen if we took very many samples under the same
conditions

Software
 bootstrapping and permutation test are feasible in practice
only with software that automates the heavy computation that
these methods require

16.1 The Bootstrap Idea

The big idea: resampling and the bootstrap distribution
 a sampling distribution is based on many random samples
from the population
 the bootstrap is a way of finding the sampling distribution
from just one sample
o Step 1: Resampling – create many resamples by
repeatedly sampling with replacement from this one
random sample. Each resample is the same size as the
original random sample
o Sampling with replacement means that after we
randomly draw an observation from the original sample,
we put it back before drawing the next observation
o Step 2: Bootstrap distribution – the bootstrap
distribution of a statistic collects its values from the
many resamples; gives information about the sampling
distribution
 the bootstrap idea – the original sample represents the
population from which it was drawn. Thus, resamples from this
original sample represent what we would get if we took many
samples from the population. The bootstrap distribution of a
statistic, based on the resamples, represents the sampling
distribution of the statistic
 Shape: the bootstrap distribution is nearly Normal – the
bootstrap distribution shape is close to the shape we expect
the sampling distribution to have (central limit theorem)
 Center: the bootstrap distribution is centered close to the
mean of the original sample; the mean of the bootstrap

, distribution has little bias as an estimator of the mean of the
original sample
 Spread: bootstrap standard error s/ √ n
 The great advantage of the resampling idea is that it often
works even when theory fails
 Statistical theory tells us if the population has a Normal
distribution, then the sampling distribution of x bar is also
Normal
o If the population is not Normal but our sample is large
we can use the central limit theorem
 The bootstrap idea: we avoid taking many samples by instead
taking many resamples from a single sample

Thinking about the bootstrap idea
 The resampled observations are not used as if they were new
data
 The bootstrap distribution of the resample means is used only
to estimate how the sample mean of one actual sample size
would vary because of random sampling
 Using the data for two purposes – to estimate a parameter
and also to estimate the variability of the estimate
 B – number of resamples; x́ * - mean of the resamples
1
o mean boot = ∑ x́ *
B
o

SE boot =
1
B−1
∑ ( x́ ¿ −meanboot ) 2
 bootstrap standard error – the bootstrap standard error
SE boot of a statistic is the standard deviation of the bootstrap
distribution of that statistic
 we don’t appeal to the central limit theorem or other theory to
tell us that a sampling distribution is roughly Normal. We look
at the bootstrap distribution to see if it is roughly Normal (or
not).
 The bootstrap allows us to calculate standard errors for
statistics for which we don’t have formulas and to check
Normality for statistics that theory doesn’t easily handle
 The plug-in principle – to estimate a parameter, a quantity
that describes the population, use the statistic that is the
corresponding quantity for the sample
 The plug-in principle tells us to estimate a population mean by
the sample mean and a population standard deviation by the
sample standard deviation
 The bootstrap idea itself is a form of the plug-in principle:
substitute the data for te population and the draw samples to
mimic the process of building a sampling distributions

Using software

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Jana1234. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

56326 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.23
  • (1)
Add to cart
Added