100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary: 2DD80 $5.92   Add to cart

Summary

Summary: 2DD80

 40 views  0 purchase
  • Course
  • Institution
  • Book

This summary contains all the theory needed for the 2DD80 exam. In addition, the document contains an example assignment for each piece of theory to test your knowledge and see how the theory is applied in an assignment.

Preview 4 out of 47  pages

  • No
  • Hoofdstuk 4 tot en met 11
  • October 18, 2022
  • 47
  • 2022/2023
  • Summary
avatar-seller
Chapter 4

4.1

Probability density function:
For a continuous random variable X, a probability density function is a function such that
1. F ( x)≥0

2. ∫ f ( x ) dx=1
−∞
b
3. P ( a ≤ X ≤ b )=∫ f ( x ) dx = area under f(x) from a to b for any a and b
a


If X is a continuous random variable, for any x1 and x2,
P ( x 1 ≤ X ≤ x 2 ) =P ( x 1< X ≤ x 2 )=P ( x 1 ≤ X < x 2 )=P(x 1< X < x 2)

Example
−x
f ( x ) ¿ e for 0< x

a. P ( 1< x )=∫ e−x dx=[−e−x ]=e−1 =0.2858
1
2.5
P ( 1< x<2.5 )=∫ e dx=[−e ]=e −e
−x −x −1 −2.5
b. =0.2037
1
4
P ( x< 4 )=∫ e dx=[−e ]=1−e =0.9817
−x −x −4
c.
0
x
P ( X < x )=0.10 →∫ e dx=[−e ]=1−e =0.10→ x=−ln ( 0.9 )=0.1054
−x −x −x
d.
0


4.2

The cumulative distribution function of a continuous random variable is
x
F ( x )=P ( X ≤ x ) =∫ f ( u ) du for−∞ < x <∞
−∞


Probability density function from the cumulative distribution function
dF (x )
Given F(x), f ( x )= as long as the derivative exists
dx

Example



{
0 x <0
F ( x )= 0.25 x 0 ≤ x< 5
1 5≤ x

a. P ( x<2.8 )=P( x ≤2.8) because X is a continuous random variable.
Then, P( X< 2.8)=F(2.8)=0.2(2.8)=0.56
b. P ( x>5 )=1−P ( x ≤ 1.5 )=1−0.2 ( 1.5 )=0.7
c. P ( X ←2 )=Fx (−2 )=0

, d. P ( x> 6 )=1−Fx ( 6 )=0

4.3

The mean or expected value of X, denoted as u or E(X) is

μ= E ( X )= ∫ f ( u ) du for−∞ < x< ∞
−∞


The variance of X, denoted as V(X) or σ2 is

σ =V ( X )= ∫ ¿ ¿
2

−∞


The standard deviation of X is σ =√ σ 2

Expected value of a function of a continuous random variable
E¿

Example
2
f ( x )=1.5 x for−1< x< 1


[ ]
1 4
x
a. E ( X ) =∫ 1.5 x dx= 1.5
3
=0
−1 4
1
b. V ( X )=∫ 1.5 x ¿ ¿
3

−1


4.4

Continuous uniform distribution
A continuous random variable X with a probability density function
1
f ( x )= a≤x ≤b
( b−a )
Is a continuous uniform random variable

Mean and variance
If X is a continuous uniform random variable over a ≤ x ≤ b
a+b 2
μ= E ( X )= ∧σ =V ( X )=¿ ¿
2

Example
Uniform distribution over the interval [-1,1]
−1+1
a. E ( X ) =
2
V ( X )=¿ ¿
σ =0,577
x
1
b. P (−x< X < x )=0.90 → ∫ dt= [ 0,5 t ] =0.5 ( 2 x ) =x
−x 2

, {
0 x←1
c. Cumulative distribution function: F ( x ) = 0.5 x+ 5−1 ≤ x <1
1 1≤ x

4.5

Normal distribution
A random variable X with probability density function
1
f ( x )= e−¿¿¿
√2 π σ
Is a normal random variable with parameters μ where−∞< μ< ∞∧σ >0
Also, E ( X ) =μ∧V ( X ) =σ 2
And the notation N( μ , σ 2) is used to denote the distribution

Standard normal random variable
A normal random variable with μ=0 and σ2=1 is called a standard normal random variable and is
denoted as Z.
The cumulative distribution function of a standard random variable is denoted as
Ф ( z )=P(Z ≤ z)

Standardizing a normal random variable
If X is a normal variable with E(X)=μ and V(X)=σ 2, the random variable
X−μ
Z= is a normal random variable with E(Z)=0 and V(Z)=1.
σ
That is, Z is a standard normal random variable

Standardizing to calculate a probability
Suppose that X is a normal random variable with mean μ and variance σ 2. Then,
P ( X ≤ x )=P ( X−μ
σ

σ )
x−μ
=P (Z ≤ z ) where Z is a standard normal random variable, and
x−μ
z= is the z-value obtained by standardizing X.
σ
x−μ
The probability is obtained by using Appendix table III with z=
σ

Example
X is normally distributed with a mean of 10 and a standard deviation of 2
a) P(X < 13) = P(Z < (13-10)/2) = P(Z < 1.5) = 0.93319
b) P(X > 9) = 1 - P(X < 9) = 1 - P(Z < (9-10)/2) = 1 - P(Z < -0.5) = 0.69146

c) P(6 < X < 14) = = P(-2 < Z < 2) = P(Z < 2) -P(Z < - 2)]= 0.9545

d) P(2 < X < 4) = = P(-4 < Z < -3) = P(Z < -3) - P(Z < -4) = 0.00132

e) P(-2 < X < 8) = P(X < 8) - P(X < -2) = = P(Z < -1) - P(Z < -6) = 0.15866

4.6

Normal approximation to the binomial distribution

, If X is a binomial random variable with parameters n and p,
X−np
Z= is approximately a standard normal random variable.
√np (1− p)
To approximate a binomial probability with a normal distribution, a continuity correction is applied
as follows:

(
P ( X ≤ x )=P ( X ≤ x+ 0.5 ) ≈ P Z ≤
x+ 0.5−np
√ np ( 1− p ) )
And

P ( x ≤ X )=P( x−0.5 ≤ X) ≈ P
(
x−0.5−np
√ np ( 1− p )
≤Z
)
The approximation is good for np> 5∧n (1− p)> 5

Normal approximation to the Poisson distribution
If X is a Poisson random variable with E(X)=λ and V(X)=λ,
X−λ
Z= is approximately a standard normal random variable.
√λ
The same continuity correction used for the binomial distribution can also be applied.
The approximation is good for λ>5




Example
X is a binomial random variable with n=200 and p=0.4

a) E(X) = 200(0.4) = 80, V(X) = 200(0.4)(0.6) = 48 and σ X =√ 48


Then,
P( X≤70)≃P Z≤
√ (
70. 5−80
48 )
=P( Z≤−1. 37 )=0 . 0853

P(70<X <90)≃P
√ 48 (
70 .5−80
<Z≤
89 . 5−80
√ 48
=P(−1 . 37<Z≤1. 37 )
)
b) =0 .9 1466-0 . 08534=0 . 8293




c)

4.7

Exponential distribution
The random variable X that equals the distance between successive events from Poisson process with
mean number of events λ>0 per unit interval is an exponential random variable with parameter λ.
The probability density function of X is,

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller juditheikelenboom. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.92. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.92
  • (0)
  Add to cart