100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Opgeloste examenvragen mondeling Fysica: trillingen, golven en thermodynamica $8.48
Add to cart

Other

Opgeloste examenvragen mondeling Fysica: trillingen, golven en thermodynamica

1 review
 115 views  5 purchases
  • Course
  • Institution

Oplossing van de theorievragen die op voorhand door de prof (Guy van der Sande) worden gegeven. Samengevat in . Werd zowel in dat jaar als het jaar daarna door meerdere studenten gebruikt en verbeterd (zou dus nog up-to-date moeten zijn). Volledig uitgetypt met afbeeldingen die de leerstof verduide...

[Show more]

Preview 4 out of 32  pages

  • October 24, 2022
  • 32
  • 2020/2021
  • Other
  • Unknown

1  review

review-writer-avatar

By: najmous • 1 year ago

avatar-seller
Uitwerking theorievragen examen



Wetten van Newton
1
• Definitie massamiddelpunt: 𝑟⃗𝐶𝑀 = 𝑀 ∑𝑚𝑗 𝑟⃗𝑗
• Snelheid van CM → afleiden naar de tijd

𝑑𝑟⃗𝐶𝑀 1 𝑑𝑟⃗𝑗 1 1 1
= 𝑣⃗𝐶𝑀 = ∑𝑚𝑗 = ∑𝑚𝑗 𝑣⃗𝑗 = ∑𝑝⃗𝑗 = 𝑃⃗⃗𝑡𝑜𝑡
𝑑𝑡 𝑀 𝑑𝑡 𝑀 𝑀 𝑀
⇔ 𝑃⃗⃗𝑡𝑜𝑡 = 𝑀𝑣⃗𝐶𝑀

• De totale impuls is dus gelijk aan de totale massa M die beweegt met de snelheid van het CM
• Als we totale impuls afleiden naar de tijd krijgen we:

𝑑𝑃⃗⃗𝑡𝑜𝑡 𝑑𝑣⃗𝐶𝑀
=𝑀 = 𝑀𝑎⃗𝐶𝑀
𝑑𝑡 𝑑𝑡
• We vinden dus de eerste 2 wetten van Newton terug:
o 1e wet: 𝐹⃗𝑛𝑒𝑡,𝑒𝑥𝑡 = 𝑀𝑎⃗𝐶𝑀 → als er geen netto-kracht op het lichaam werkt, zal de
snelheid van het CM constant zijn
𝑑𝑃⃗⃗𝑡𝑜𝑡
o 2e wet: 𝐹⃗𝑛𝑒𝑡,𝑒𝑥𝑡 = 𝑑𝑡
→ de netto externe kracht (dus alle krachten) grijpen aan in
het CM

Totale kinetische energie
• Definitie traagheidsmoment: 𝐼 = ∑𝑚𝑖 𝑟𝑖,⊥
2

• Info halen uit een punt van een lichaam → positie van dat punt opdelen in CM-vector +
vector van CM tot dat punt
• Totale kinetische energie:
1 1 ′ 2 1 ′ ′ 2
𝐾𝑡𝑜𝑡 = ∑𝐾𝑖 = ∑ 𝑚𝑖 𝑣𝑖2 = ∑ 𝑚𝑖 ⋅ |𝑣⃗𝐶𝑀 + 𝑣⃗𝑖 | = ∑ 𝑚𝑖 (|𝑣⃗𝐶𝑀 |2 + 2|𝑣⃗𝐶𝑀 | ⋅ |𝑣⃗𝑖 | + |𝑣⃗𝑖 | )
2 2 2
1 2 ′ ′2 1 2 ′ 1 ′2
= ∑ 2 𝑚𝑖 (𝑣⃗𝐶𝑀 + 2𝑣⃗𝐶𝑀 ⋅ 𝑣⃗𝑖 + 𝑣⃗𝑖 ) = ∑ 2 𝑚𝑖 𝑣⃗𝐶𝑀 + 𝑣⃗𝐶𝑀 ∑𝑚𝑖 𝑣⃗𝑖 + ∑ 2 𝑚𝑖 𝑣⃗𝑖

⇔ 𝐾𝑡𝑜𝑡 = 𝐾𝐶𝑀 + 𝐾𝑟𝑜𝑡

∑𝑚𝑖 𝑣⃗𝑖 = 0, want het is de som van alle punten in een rotatie → voor elk punt dat naar rechts/boven gaat, is er
een punt dat precies volgens die vector naar links/onder gaat
1 1
• 2
Je kan 𝐾𝐶𝑀 herschrijven als: 𝐾𝐶𝑀 = ∑ 2 𝑚𝑖 𝑣⃗𝐶𝑀 2
= 2 𝑀𝑣𝐶𝑀
1 1 2 1
• Je kan 𝐾𝑟𝑜𝑡 herschrijven als: 𝐾𝑟𝑜𝑡 = ∑ 𝑚𝑖 𝑣⃗𝑖′2 = ∑ 𝑚𝑖 (𝜔𝑟𝑖,⊥ ) = 𝐼𝜔2
2 2 2
1 1
• 2
Je krijgt dus: 𝐾𝑡𝑜𝑡 = 2 𝑀𝑣𝐶𝑀 + 2 𝐼𝜔2




1

,Verband met de hoekversnelling
• Definitie krachtmoment: 𝜏⃗ = 𝐹⃗ × 𝑟⃗ 𝑜𝑓 𝜏 = 𝑟𝐹𝑠𝑖𝑛(𝜙) = 𝑟𝐹⊥ = 𝑟⊥ 𝐹
𝑑𝜔 𝑎𝑡
• Definitie hoekversnelling: 𝛼 = =
𝑑𝑡 𝑟
• Volgens de 2e wet van Newton:
𝐹𝑡 = 𝐹⊥ = 𝑚𝑎𝑡 = 𝑚𝑟𝛼
• Dus het verband tussen 𝜏 en 𝛼 is:
𝜏 = 𝑟𝐹⊥ = 𝑚𝑟 2 𝛼 ⇔ 𝜏𝑛𝑒𝑡 = ∑𝑚𝑖 𝑟𝑖2 𝛼 = 𝐼𝛼

Verband met het impulsmoment
• Definitie impulsmoment: 𝐿⃗⃗ = 𝑟⃗ × 𝑝⃗
• Leidt L af naar de tijd

𝑑𝐿⃗⃗ 𝑑 𝑑𝑟⃗ 𝑑𝑝⃗ 𝑑𝐿⃗⃗
= (𝑟⃗ × 𝑝⃗) = × 𝑝⃗ + 𝑟⃗ × = 𝑣⃗ × 𝑚𝑣⃗ + 𝑟⃗ × 𝐹⃗𝑛𝑒𝑡 → = 𝜏⃗𝑛𝑒𝑡
𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡
• Dimensie impulsmoment: 𝑁 ⋅ 𝑚 ⋅ 𝑠 ⇔ 𝑘𝑔 ⋅ 𝑚2 ⋅ 𝑠 −1
• Dimensie krachtmoment: 𝑁 ⋅ 𝑚 ⇔ 𝑘𝑔 ⋅ 𝑚2 ⋅ 𝑠 −2




• Definitie krachtmoment: 𝜏⃗ = 𝐹⃗ × 𝑟⃗ 𝑜𝑓 𝜏 = 𝑟𝐹𝑠𝑖𝑛(𝜙) = 𝑟𝐹⊥ = 𝑟⊥ 𝐹
• Dimensie krachtmoment: 𝑁 ⋅ 𝑚 ⇔ 𝑘𝑔 ⋅ 𝑚2 ⋅ 𝑠 −2
• Definitie impulsmoment: 𝐿⃗⃗ = 𝑟⃗ × 𝑝⃗ = 𝑟 ⋅ 𝑝 ⋅ 𝑠𝑖𝑛(𝛽) = 𝑟 ⋅ 𝑚𝑣 ⋅ 𝑠𝑖𝑛(𝛽)
• Dimensie impulsmoment: 𝑁 ⋅ 𝑚 ⋅ 𝑠 ⇔ 𝑘𝑔 ⋅ 𝑚2 ⋅ 𝑠 −1

Wet der perken + bewijs
• Wet der perken: bij de beweging van een planeet rond de zon bestrijkt de voerstraal steeds
dezelfde oppervlakte in een gelijk tijdsinterval
• Bewijs: de beweging van een planeet rond de zon is een ECB → er is enkel een centripetale
kracht → krachtmoment = 𝜏⃗ = 𝐹⃗ × 𝑟⃗ = 0 want 𝐹⃗𝑐 is evenwijdig met 𝑟⃗ → impulsmoment is
behouden
• Als 𝐿 = 𝑟 ⋅ 𝑚𝑣 ⋅ 𝑠𝑖𝑛(𝛽), weten we dat:
1 1 Δ𝐴 1 𝐿
Δ𝐴 = 𝑟 ⋅ Δ𝑠 ⋅ 𝑠𝑖𝑛(𝛽) = 𝑟 ⋅ 𝑣Δ𝑡 ⋅ 𝑠𝑖𝑛(𝛽) ⇔ = 𝑟 ⋅ 𝑣 ⋅ 𝑠𝑖𝑛(𝛽) =
2 2 Δ𝑡 2 2𝑚
Δ𝐴
• L en m blijven constant → Δ𝑡 is ook constant → Δ𝐴 is constant over een gelijk tijdsinterval




2

,Verband L en 𝜔
• Definitie impulsmoment: 𝐿⃗⃗ = 𝑟⃗ × 𝑝⃗ = 𝑟 ⋅ 𝑝 ⋅ 𝑠𝑖𝑛(𝛽) = 𝑟 ⋅ 𝑚𝑣 ⋅ 𝑠𝑖𝑛(𝛽)
𝑣
• Definitie hoeksnelheid: 𝜔 =
𝑟
• Neem een ECB → de impuls staat loodrecht op de straal → sin(𝛽) = 1

𝐿 = 𝑟𝑝 = 𝑟𝑚 ⋅ 𝑣 = 𝑟𝑚 ⋅ 𝜔𝑅

• Neem de z-component van het impulsmoment
𝑅
𝐿𝑧 = 𝑚𝑟𝑣 ⋅ 𝑠𝑖𝑛(𝜃) = 𝑚𝑟𝑣 ⋅ = 𝑚𝜔𝑅²
𝑟
Arbeid-energiestelling




3

, 4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller kobetheylaert. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.48. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

59063 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$8.48  5x  sold
  • (1)
Add to cart
Added