Samenvatting (Examen)Formularium Statistiek Voor Psychologen Deel 2 (P0M17A)
48 views 0 purchase
Course
Statistiek Voor Psychologen Deel 2 (P0M17A)
Institution
Katholieke Universiteit Leuven (KU Leuven)
Formularium te gebruiken op het examen Statistiek voor Psychologen deel 2. Document is een word document zodat deze nog aangepast kan worden naar eigen wensen en eigen toevoegingen. Formularium bevat ook stappenplannen van onder andere hypothesetoetsing en betrouwbaarheidsinterval. Ook formules van...
1. Modellen: Aantal keer succes of successen Wacht”tijd” tot eerste succes X Bern ( θ ) D ( 0<θ< 1 )
π X ( 1 )=P ( X =1 )=θ
Beurten of n Y Bin ( n , θ ) D ( 0<θ<1 ) Z Geo (θ ) D ( 0<θ <1 )
herhalingen π X ( 0 ) =P ( X=0 )=1−θ
()
π Y ( k )= n θ k ¿
k
π Z ( k ) =¿
1 2 1−θ
μZ = σ Z = 2
2
μ X =θ σ X =θ ( 1−θ )
2
μY =nθ σ Y =n(θ) ( 1−θ ) θ θ Bern (θ )=Bin(1 , θ)
Continu medium X Poisson ( λ ) D ( λ> 0 ) T exp ( λ ) C ( λ>0 ) Y
Y Bin ( n , θ ) voor proportie
{ n
k
λ −λ −λt
φ T ( t ) = λ e t ≥0
π X ( k )= e
k!
2
μ X =λ σ X = λ 1
μT = σ 2X = 2
0t <0
1
μ Y =E
n
Y
n [ ]
1
= E [ Y ] =θ
n
λ λ 1 θ ( 1−θ )
σ 2Y = 2 σ 2Y =
ФT ( t )=P ( T ≤ t )=1−e
−λt
n n n
(als bin geldt voor aantal succes Y in n
herhalingen van een bern-experiment)
X U ( a , b ) C( a<b) X N ( μ , σ 2 ) C(σ >0)
{
1
φ X ( x )= b−a voor a ≤ x ≤ b
2 ( σ )
2
−1 x−μ
1
¿ 0 anders φ X ( x )= e Strikt dalende functie van
√2 π ⋅ σ
a+b 2
μX= σ =¿ ¿ ( x−μ )2
2 X
d−c Dit impliceert dat φ X symmetrisch is t.o.v. μ
Als X U ( a , b ) en [ c , d ] ⊂ [ a , b ] dan P ( c ≤ X ≤ d )= 2 2
b−a μ X =μ σ X =σ
ZRM: a+(b−a)∗rand Standaardnormaalmodel: μ X =0 σ X =1
2
Als X N ( μ , σ ) en Y =aX+ b , danY N ( aμ+ b , a σ )
2 2 2
Modellen voor meerdere variabelen:
Biv. Onafhankelijk: π X , Y ( x , y ) =π X ( x ) ∙ π Y ( y )
2 ( σ[ ) ( )]
2 2
−1 x−μ1 y−μ2
+
1 σ2
π X ∨Y = y =π X ( x ) en π Y ∨X =x =π Y ( y ) N : φ X ,Y ( x , y )= e
1
2 π ⋅σ 1 σ 2
φ X ∨Y = y =φ X ( x ) en φ Y ∨X =x =φ y ( y )
Bern: π X ,Y ( 0,0 )=(1−θ1 )(1−θ 2)
Biv. Afhankelijk:
π x , y (x , y ) = π X ∨Y = y (x )∙ π Y ( y ) N :φ X ,Y ( x , y )=
1
e
−1
2( 1−ρ )
2 [( ) ( )
x−μ1 2 x−μ2 2 2 ρ ( x−μ1 )( y−μ2 )
σ1
+
σ2
−
σ 1 ∙σ 2
2 π ⋅σ 1 σ 2 ( 1−ρ )
2
= π Y ∨X = x ( y)∙ π X ( x)
2 2
Te noteren als: ( X , Y ) N ( μ1 , μ2 ; σ 1 , σ 2 , ρ)
Complexe modellen:
Mengselmodellen: π x = λ ∙ π (1) (2 )
x +(1−λ)∙ π x
π x = λ 1 ∙ π (x1) + λ2 ∙ π (x2) +(1−λ1− λ2) ∙ π (3)
x
Regressiemodellen: 2
Y ¿ X =x N (β 0 + β 1 x j , σ )
j
2
Y i=β 0 + β 1 x i + Ei met Ei (iid ) N ( 0 , σ )
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller naomi-willems. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $22.16. You're not tied to anything after your purchase.