100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Formelsammlung Mathe 1 $7.38
Add to cart

Other

Formelsammlung Mathe 1

 71 views  1 purchase
  • Course
  • Institution

Der Inhalt beschränkt sich auf die wichtigsten Themen für Mathe 1 im ersten Semester im Studiengang Wirtschaftsingenieurwesen an der DHBW Stuttgart.

Preview 2 out of 8  pages

  • November 3, 2022
  • 8
  • 2021/2022
  • Other
  • Unknown
avatar-seller
1. Komplexe Zahlen: 1.5.2 Trigonometrisch/polar zurück in kartesisch
𝑧 = |𝑧| ⋅ (cos 𝜑 + 𝑖 ⋅ sin 𝜑) → 𝑧 = 𝑎 + 𝑏𝑖
1.1 Komplexe Zahl / konjungiert komplexe Zahl mit 𝑎 = |𝑧| ∙ cos 𝜑 und 𝑏 = |𝑧| ∙ sin 𝜑
𝑧 = 𝑎 + 𝑏𝑖 𝑧̅ = 𝑎 − 𝑏𝑖 √−1 = ±𝑖 𝑖 2 = −1 1.6 Rechnen mit Komplexen Zahlen
________________________________________________________________
1.6.1 Addition: 𝑧1 + 𝑧2 = (𝑎 + 𝑏𝑖) + (𝑐 + ⅆ𝑖) = (𝑎 + 𝑐) + (𝑏 + ⅆ)𝑖
1.2 Gleichheit zweier Komplexer Zahlen
1.6.2 Subtraktion: 𝑧1 − 𝑧2 = (𝑎 + 𝑏𝑖) − (𝑐 + ⅆ𝑖) = (𝑎 − 𝑐) + (𝑏 − ⅆ)𝑖
𝑧1 = 𝑥1 + 𝑖𝑦1 und 𝑧𝑧 = 𝑥2 + 𝑖𝑦2 gilt: 𝑧1 = 𝑧2 , wenn 𝑥1 = 𝑥2 ; 𝑦1 = 𝑦2
1.6.3 Multiplikation:
________________________________________________________________
𝑧1 ∙ 𝑧2 = (𝑎 + 𝑏𝑖) ∙ (𝑐 + ⅆ𝑖) = 𝑎𝑐 + 𝑎ⅆ𝑖 + 𝑐𝑏𝑖 + 𝑏ⅆ𝑖 2 = (𝑎𝑐 − 𝑏ⅆ) + 𝑖 ∙ (𝑎ⅆ + 𝑏𝑐)
1.3 Betrag einer Komplexen Zahl
|𝑧| = |𝑎 + 𝑏𝑖| = √𝑎2 + 𝑏 2 = √𝑧 ⋅ 𝑧̅ 𝑧1 ∙ 𝑧2 = |𝑧1 | ∙ 𝑒 𝑖𝜑1 ∙ |𝑧2 | ∙ 𝑒 𝑖𝜑2 = |𝑧1 | ∙ |𝑧2 | ∙ 𝑒 𝑖(𝜑1 +𝜑2 ) (Drehstreckung)
________________________________________________________________ 1.6.4 Division:
1.4 Darstellungsformen 𝑧1 𝑎 + 𝑏𝑖 𝑎 + 𝑏𝑖 𝑐 − ⅆ𝑖 (𝑎𝑐 + 𝑏ⅆ) − 𝑖 ∙ (𝑎ⅆ + 𝑏ⅆ) 𝑎𝑐 + 𝑏ⅆ 𝑏𝑐 − 𝑎ⅆ
= = ∙ = 2 2
= 2 2
+𝑖∙ 2
1.4.1 Algebraische/kartesische Form (Normalform) 𝑧2 𝑐 + ⅆ𝑖 𝑐 + ⅆ𝑖 𝑐 − ⅆ𝑖 𝑐 +ⅆ 𝑐 +ⅆ 𝑐 + ⅆ²
𝑧 = 𝑎 + 𝑏𝑖 a: Realteil von z b: Imaginärteil von z 𝑧1 |𝑧 |∙𝑒 𝑖𝜑1 |𝑧 |
= |𝑧1 |∙𝑒 𝑖𝜑2 = |𝑧1 | ∙ 𝑒 𝑖(𝜑1 −𝜑2 )
𝑧2 2 2
1.4.2 Trigonometrische / Polarform _________________________________________________________________
𝑧 = |𝑧| ⋅ (cos 𝜑 + 𝑖 ⋅ sin 𝜑) konjungiert: 𝑧̅ = |𝑧| ⋅ (cos 𝜑 − 𝑖 ⋅ sin 𝜑) 1.7 Potenzen
1.4.3 Exponentialform 𝑧 𝑛 = (𝑎 + 𝑏𝑖)𝑛 = (|𝑧| ∙ 𝑒 𝑖𝜑 )𝑛 = |𝑧|𝑛 ∙ 𝑒 𝑖𝑛𝜑 = |𝑧|𝑛 ∙ (cos(𝑛𝜑) + 𝑖 ∙ sin(𝑛𝜑))
𝑧 = |𝑧| ⋅ 𝑒 𝑖𝜑 konjungiert: 𝑧̅ = |𝑧| ∙ 𝑒 −𝑖𝜑 De Moivresche Formel: (𝐜𝐨𝐬 𝝋 + 𝒊 ∙ 𝐬𝐢𝐧 𝝋)𝒏 = (𝐜𝐨𝐬(𝒏𝝋) + 𝒊 ∙ 𝐬𝐢𝐧(𝒏𝝋))
________________________________________________________________ _________________________________________________________________
1.5 Umrechnung zwischen den Darstellungsformen 1.8 Wurzel (Trigonometrische Tabelle)
𝜑+2𝜋𝑘
1.5.1 Kartesisch in Trigonometrisch 𝑛 𝑖( ) 𝑛 𝜑+2𝜋𝑘 𝜑+2𝜋𝑘
𝑧𝑘 = √|𝑧| ∙ 𝑒 𝑛 = √|𝑧| ∙ cos ( 𝑛
)+ 𝑖 ∙ sin ( 𝑛
) mit k = 0,1,2,…
𝑧 = 𝑎 + 𝑏𝑖 → 𝑧 = |𝑧| ∙ (cos 𝜑 + 𝑖 ∙ sin 𝜑) Bsp.: Alle 5ten Wurzeln von z²
mit |𝑧| = √𝑎2 + 𝑏 2 = √𝑧 ∙ 𝑧̅ und 𝜑=
𝑏
arctan ( ) 5 𝑖(
𝜑+2𝜋0
) 𝜑 + 2𝜋 ∗ 0 𝜑 + 2𝜋 ∗ 0
𝑎 𝑧0 = √|𝑧| ∙ 𝑒 5 = 5 ∙ cos ( ) + 𝑖 ∙ sin ( )
5 5
Korrekturwerte: 5 𝑖(
𝜑+2𝜋1
) 𝜑 + 2𝜋 ∗ 1 𝜑 + 2𝜋 ∗ 1
𝑧1 = √|𝑧| ∙ 𝑒 5 = 5 ∙ cos ( ) + 𝑖 ∙ sin ( )
1.-Quadrant: - 2/3 Quadrant: +𝜋 4. Quadrant: +2𝜋 5 5
a > 0, b > 0 a<0 a > 0, b < 0 _________________________________________________________________
𝜋 3𝜋
𝜑 = 2 , a = 0, b > 0 𝜑= , a = 0, b < 0 1.9 Verschiebesätze
2
𝜑 = 𝜋 , a <0 , b = 0 𝜑 = 0, a = 0, b = 0; a > 0, b = 0 𝜋 𝜋
cos 𝑥 = sin(𝑥 + 2 ) sin 𝑥 = cos(𝑥 − 2 )

, 1.10 Überlagerung gleichfrequenter Schwingungen 𝑌1 + 𝑌2 = 𝑌 2. Matrizen:
1. 𝑌1 𝑢. 𝑌2 in eine Form bringen (sin/cos)
2. 𝑌1 𝑢. 𝑌2in Exponentialform umschreiben und 𝑒 𝜔𝑡 ausklammern 𝑎 𝑏 𝑐 𝑎 ⅆ 𝑔
3. Exponentialformen in Polarformen umschreiben 2.1 Transponieren: (ⅆ 𝑒 𝑓) → (𝑏 𝑒 ℎ)
(negativer Winkel in sin & cos beachten und ggf. raus ziehen siehe 𝑔 ℎ 𝑖 𝑐 𝑓 𝑖
Additionstheorem) 2.2 Determinante:
4. Jeweils katesische Form berechnen 𝑎12 𝑎11
 (2x2) – Matrix: det (𝑎
) = 𝑎11 ∙ 𝑎22 − 𝑎12 ∙ 𝑎21
5. Beide katesischen Formen addieren(=Y) 21 𝑎22
 (3x3) – Matrix: Regel nach Sarrus
6. |𝑌| = A berechnen 𝑎 𝑏 𝑐 𝑎 𝑏
𝑏 180°∗ 𝜑
7. 𝜑 = arctan (𝑎) + Korrektur → 𝜋
= 𝜑° ⅆ 𝑒 𝑓 ⅆ 𝑒 𝑎 ∗ 𝑏 ∗ 𝑐 + ⋯− 𝑐 ∗ 𝑒 ∗ 𝑔 −⋯
8. Y = 𝐴 ∗ 𝑒 𝑖(𝜔𝑡+𝜑 )
= 𝐴 ∗ sin(𝜔𝑡 + 𝜑) 𝑔 ℎ 𝑖 𝑔 ℎ
 > - Matrix: Mit Entwicklungssatz; Spalte od. Zeile mit meisten 0 suchen
1.11 Additionstheoreme beweisen Von übrigen Wert x Zeile und Spalte streichen und vor übrige Matrix
multiplizieren; beachte + - + - + Schema für Wert x!
𝑒 𝑖𝑥 = cos 𝑥 + 𝑖 ∙ sin 𝑥 cos(−𝑥) = cos 𝑥
sin 𝑥
𝑒 −𝑖𝑥 = cos 𝑥 − 𝑖 ∙ sin 𝑥 sin(−𝑥) = −sin 𝑥 tan 𝑥 =
cos 𝑥 det(𝐴𝜇 ) = 0: • Nullzeile / -spalte
↓  𝐿 ∈ 𝑅\{𝜇1 } • Zeilen/Spalten linear abhängig / vielfaches v. einander
𝑒 𝑖𝑥 +𝑒 −𝑖𝑥 𝑒 𝑖𝑥 −𝑒 −𝑖𝑥 −𝑒 𝑖𝑥 +𝑒 −𝑖𝑥 • Summe zweier Zeile/Spalten = Summe anderer Zeile/Spalte
cos 𝑥 = sin 𝑥 = tan 𝑥 = 𝑒 𝑖𝑥 +𝑒 −𝑖𝑥
∙𝑖
2 2𝑖 • Identische Zeile/Spalten
Additionstheorem 1: 2 ∙ sin 𝑥 ∙ cos 𝑥 = 2 sin(2𝑥) 2.3 Inverse det(𝐴) ≠ 0 , so ist A invertierbar
Additionstheorem 2: cos² 𝑥 − sin2 𝑥 = cos(2𝑥)
1 ⅆ −𝑏 𝑎 𝑏
_________________________________________________________________ 𝐴−1 = 𝑎𝑑−𝑏𝑐 ∙ ( ) → 𝐴=( ) mit det(𝐴) ≠ (𝐴|𝐼)  (𝐼|𝐴−1 )
−𝑐 𝑎 𝑐 ⅆ
1.12 Periodizität _________________________________________________________________

sin 𝑥 = sin(𝑥 + 2𝜋𝑘) cos 𝑥 = cos(𝑥 + 2𝜋𝑘) 2.4 Rechenregeln:
𝐴 ∙ 𝐴−1 = 𝐼
𝑒 𝑖(2𝜋𝑘) = 1 → cos(2𝜋𝑘) + 𝑖 ∙ sin(2𝜋𝑘) = 1 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴 → 𝑘𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣
−1 −1 −1
_________________________________________________________________ (𝐴 ∙ 𝐵) = 𝐵 ∙𝐴
𝐴 ∙ 𝐼 = 𝐴 (Einheitsmatrix)
−1 −1 −1 −1
1.13 Gebietseinteilung (𝐴 ∙ 𝐵 ∙ 𝐶) = 𝐶 ∙𝐵 ∙𝐴
Umformen Bsp.:
𝑇 𝑇 𝑇
Kreisgleichung: )2
(𝑥 − 𝑚1 + (𝑥 − 𝑚2 = 𝑟² )2
M(x0/y0); r (𝐴 ∙ 𝐵) = 𝐵 ∙ 𝐴
2 2
𝐴−1 ∙ 𝑋 ∙ 𝐶 −1 + 𝐴−1 ∙ 𝑋 = 𝐷 |𝐴 ∙
Bsp.: 𝑥 + 𝑦 − 𝑥 + 2𝑦 = 4 −1 −1 𝑇 𝑇
(𝐴 ) = 𝐴 = (𝐴 )
Variablen auf eine Seite & Ganze Zahlen auf andere; dann Quadratisch ergänzen: 𝑋 ∙ 𝐶 −1 + 𝑋 = 𝐴 ∙ 𝐷 |( )
𝑇)
1 2 2 2 1 2 2 2 det(𝐴) = det(𝐴
= 𝑥2 − 𝑥 + (2) + 𝑦 2 + 2𝑦 + (2) =4+ (2) + (2) „ergänzen“ 𝑋 ∙ (𝐶 −1 + 𝐼) = 𝐴 ∙ 𝐷 | ∙ (𝐶 −1 + 𝐼)−1
−𝑛 (𝐴−1 )𝑛
2 2 𝐴 =
1 2 21 1 21
=(𝑥 − (2)) + (𝑦 + (2)) = → M( 2 / -1 ); r =√ 4 𝑋 = 𝐴 ∙ 𝐷 ∙ (𝐶 −1 + 𝐼)−1
4 (𝐴𝑛 )−1 = (𝐴−1 )𝑛
!=0 !=0

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Mistery0803. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.38. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.38  1x  sold
  • (0)
Add to cart
Added