Direct ioniserende straling (1)
Direct en indirect
Ongeladen deeltjes ioniseren indirect
- Fotonen en neutronen
- Maken deeltjes vrij die daarna veel ionisaties veroorzaken
Geladen deeltjes ioniseren direct
- Elektronen, alfadeeltjes en ionen
- Zorgen zelf voor veel ionisaties, het is een deeltje die is vrijgemaakt door een
foton. Hij kan zelf zorgen voor veel ionisaties.
Excitatie
Door absorptie van energie kan een elektron naar een schil gaan die verder is gelegen
van de kern van het atoom, en dus in een hoger energieniveau. Het atoom is nog steeds
neutraal maar in een aangeslagen toestand (het heeft een hoger energieniveau dan de
grondtoestand).
Ionisatie
Een ionisatie is de overgang van een neutrale toestand naar een geladen toestand. Als
een elektron genoeg energie heeft geabsorbeerd zodat het weg kan uit de schil, en dus
weg van het atoom, wordt het atoom positief geladen: een positief ion. Het elektron kan
zich binden aan een ander atoom. Als dit neutraal was, wordt dit nu negatief geladen: een
negatief ion.
Remstralingsproductie
Wanneer het snelle geladen deeltje (elektron/proton/alfadeeltje) onder invloed van de
elektrische velden van de atoomkernen wordt afgebogen, ontstaat er remstraling.
Remstraling is elektromagnetische straling die ontstaat omdat het deeltje wordt afgeremd
en dus energie verliest. De waarschijnlijkheid van het ontstaan van remstraling neemt toe
bij toenemende energie van het elektron en bij toenemend atoomnummer van het
medium.
Elastische botsing
Dit kan vergeleken worden met de botsing van biljartballen. Een biljartbal die frontaal
botst op een andere bal met gelijke massa, draagt al zijn energie over aan die bal.
Hetzelfde geldt voor een neutron dat botst op een atoomkern (=proton). Het neutron blijft
over zonder kinetische energie en het atoomkern blijft over met de energie die het
neutron had voor de botsing. Het proton heeft veel kinetische energie dat hij zal
overdragen via ionisatie. Neutronen zijn dan ook te beschouwen als indirect ioniserende
straling.
In-elastische botsing
Een botsing tussen niet-elastische voorwerpen. Een deel van de energie wordt gebruikt
om het voorwerp niet elastisch te vervormen. Bij een botsing van een neutron met een
atoomkern zal een deel van de energie door de atoomkern worden opgenomen. De
atoomkern blijft in hogere energietoestand (excitatie) achter. De kern zal na zekere tijd
weer in de grondtoestand terugvallen waarbij energie vrijkomt.
, SD Doelen Periode 3
(lineaike) Stopping power (stopping power gaat over elektronen!!!)
Het verlies van kinetische energie dEk langs een afgelegde weg dl. De eenheid is MeV/cm.
Het is niet praktisch doordat het niet meetbaar is en het afhankelijk is van de dichtheid.
d Ek
S=
dl
Twee vormen stopping power
Collision Stopping Power botsingen
- Excitatie Scoll
- Ionisatie
Radiation Stopping Power afremmen in EM-veld
- Remstraling Srad
Totale stopping power: Stotaal = Scoll + Srad
Massieke stopping power
Dit is stopping power gedeeld door de dichtheid. Dit is goed meetbaar en onafhankelijk
van de dichtheid van de stof.
S 1 d Ek S S S
= ∙
ρ ρ dl ρ () () ()
tot =
ρ
col+
ρ
rad
LET
Linear Energy Transfer = de energie afgifte per afgelegde eenheid van weg. De eenheid is
keV/µm.
Het is de overdracht van energie aan materie.
Dracht
Direct ioniserende straling heeft een maximaal diepte bereik: de dracht (R, van Range).
De dracht is afhankelijk van het materiaal (atoomnummer en dichtheid) en van het
stralingsdeeltje (energie, massa en lading).
0,5 E
R=
ρ
Dichtheid in: g/cm3
De energie moet groter zijn dan 0,6 MeV en kleiner dan ongeveer 12 MeV zijn om
gebruik te kunnen maken van deze formule!
Gereduceerde dracht
De dracht vermenigvuldigd met de dichtheid van de absorber. Het heeft de eenheid
g/cm2.
Het is onafhankelijk van de dichtheid dus kan je dit gelijkstellen bij verschillende stoffen.
E
ρ ∙ R=
2
Luminescentie
Fosforescentie en fluorescentie bij elkaar.
Fosforescentie
Uitzending van licht nadat de energie is geabsorbeerd (nalichten).
Fluorescentie
Uitzending van licht terwijl energie wordt geabsorbeerd (oplichteng).