100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Résumé Mathématique sur les fonctions exponentielles 1 $2.99
Add to cart

Summary

Résumé Mathématique sur les fonctions exponentielles 1

 4 views  0 purchase
  • Course
  • Institution

Ceci est un cours complet sur les fonctions exponentielles niveau lycée il contient plusieurs notions très importantes qui pourront soit vous aidez à comprendre la leçon ou pour renforcer sa compréhension.

Preview 1 out of 1  pages

  • November 27, 2022
  • 1
  • 2022/2023
  • Summary
  • Secondary school
  • High school
  • 4
avatar-seller
Benmoussa Mohammed

page - 1 - NIVEAU : 2PC - SVT logarithmes + exponentielles

Fonctions logarithmes
La fonction logarithme
 Df  0,  , continue et dérivable sur Df  0,  avec  ln x  ' 
1
népérienne f  x   ln x x
 ln1  0 , lne  1 avec e  2, 718... e est un nombre irrationnel .
a  0 et b  0 et r  1 a
Signe de ln(x)  lnab  lna  lnb , ln     ln a , ln  ln a  ln b , lnar  r lna
 
a b
x 0 1 
 a,b  0,  ,ln  a  = ln  b   a  b
ln x  0 
 a,b  0,  ,a  b  ln  a   ln  b 

 
 f  x   ln u  x  , x  Df  x  Du et u  x     
u'  x  u'  x 
 f '  x    ln u  x    sont F  x   ln u  x   c
'
donc primitives de
  u  x u  x
lim ln  x    lim ln  x    lim x  ln  x   0
x  x  0 x0

ln  x  ln  x  lim xn  ln  x   0
lim 0 lim n 0 x  0
x  x x  x
ln  x  ln  x  1
lim 1 lim 1
x 1 x1 x0 x
Logarithmes de base a
Logarithmes de base a : ln x ln  x 
a  0,1  1,  r   f  x   loga  x   , a  0,1  1,  ; loge  x    ln  x 
lna ln  e 
 a  10 donc log10  x   Log  x  ( logarithme décimale )
 loga  x  y   loga  x   loga  y  et loga xr = r  loga  x   
  x
 log a  1    log a  y  et loga    loga  x   loga  y 
y y
f  x   ax La fonction exponentielle népérienne f  x   e
x


Les fonctions  La fonction réciproque de x ln x est la fonction x ex définie de
exponentielles de base a
 0,  .donc x  , ex  0 .
est : f (x)  ax  exlna
a  0,1  1,  r 
 Df  , continue et dérivable sur Df  avec e  '  e
x x



 f  x  e
u x 
x, y  , x  Df  x  Du

    u'  x  eu x donc primitives de u'  x  eu x sont F  x   eu x  c
 f '  x   e
u x 
y '
ax  ay  ax  y ; a x  axy
 
1 ax e  y
x
 x  ln y
x  , ln  ex   x x  0,  , elnx  x
x x y
x  a ; y a 
a a x   y0
 0  a  1 , x, y 
ea
1
 ex 
r
a a xy
x y
eab  ea  eb e b  , e ab
 = erx , ex  ex  e2x
eb eb
 a  1 , x, y 
lim ex  0 lim ex  
 ex   ex   enx
n
ax  ay  x  y x  x 
ex  ex 
lim x  ex  0 lim x  e  0 ; n 
n x *

 a  '   ln  a    a
x x
x  x
n

xlna ex ex ex  1
Rq : f (x)  a  e
x
lim   lim   ; n *
lim 1
x  x x  xn x0 x


-1-

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller yassminetaghzaoui. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $2.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

53008 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$2.99
  • (0)
Add to cart
Added