100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting multivariate data-analyse stof tentamen deel 2 $3.26   Add to cart

Summary

Samenvatting multivariate data-analyse stof tentamen deel 2

 6 views  0 purchase
  • Course
  • Institution

Bevat de stof van college 5 t/m 8 (alles voor tentamen deel 2).

Preview 2 out of 7  pages

  • December 18, 2022
  • 7
  • 2022/2023
  • Summary
avatar-seller
Samenvatting TB234B Multivariate data analyse – Deel 2

Vereiste meetniveau bij regressie
 Afhankelijke variabele:
o Altijd interval of ratio meetniveau
o Als nominaal → logistische regressie
 Predictor / onafhankelijke variabele
o In principe interval of ratio meetniveau
 Je moet gemiddelden en correlaties kunnen interpreteren
o Maar dichotoom kan ook (met dummy variabele)

Dummy variabelen
= speciaal gecodeerde dichotoom met twee categorieën die met 0 en 1 gecodeerd zijn
 Referentiecategorie = categorie die met 0 is gecodeerd
 Een nominale variabele gecodeerd als dummy variabele kan predictor zijn in regressieanalyse, omdat
je gemiddelden en correlaties kunt interpreteren (dat kan normaal niet bij nominale variabelen)
Interpretatie gemiddelde en correlatie
 Gemiddelde = proportie (bijv. 62,5% van de auto’s komt uit de VS)
o Geeft heel precies de verdeling aan!
 Correlatie kun je interpreteren (Bijv. correlatie is positief: categorie 1 gaat vaker gepaard met hoger
brandstofverbruik dan categorie 0, dus brandstofverbruik is hoger in VS)

Regressie met dummy variabelen
Regressievergelijking: Y = C + b*D
 D = dummy variabele (zie het als een schakelaar die aan of uit staat)
 C = constante van de referentiegroep
 b = regressiecoëfficiënt = het verschil in de constante tussen groep 1 en 0
o Als coëfficiënt statistisch significant is, is het verschil dus statistisch significant
Interpretatie
 Normaal: Per eenheid stijging X1, stijgt Y2 met *coëfficiënt* eenheden
o Maar X1 kan niet in eenheden stijgen, hij staat aan of uit
 Bij dummy variabele: Coëfficiënt duidt een verschil in de constante aan tussen de met 1 gecodeerde
groep en de referentiegroep
o Er zijn geen tussenliggende waarden, dus het betreft een discreet verschil
 Regressie met enkel dummy als predictor: Coëfficiënt duidt verschil in gemiddelden in Y aan
o Gelijkwaardig aan t-toets op verschil in gemiddelden
Voordeel multipele regressieanalyse t.o.v. t-toets
 Je controleert voor de effecten van de andere predictoren
 Daarmee schakel je de verschillen tussen de groepen uit!
 Als het ware maak je de groepen vergelijkbaar

Hoofd- & interactie-effecten
Hoofdeffecten
 Hoofdeffect: Y = C + b1X + b2Z = de bijdrage van variabele X aan de schatting van Y gecontroleerd voor
Z, maar onafhankelijk van de waarde van Z
 De bijdrage van een variabele aan de voorspelling hangt alleen af van de waarde van die variabele (en
zijn coëfficiënt), maar niet van de waarde van de andere variabele
 De afhankelijke variabele wordt voorspeld door een gewogen optelling van variabelen  lineair
additieve functie
Interactie-effecten
 Interacties: Y = C + b1X + B2Z + b3XZ = C + b1X + (B2 + b3X)Z
o Als b3 statistisch significant is, dan hangt de bijdrage van Z aan de waarde van Y af van de
waarde van X
o Een interactie is multiplicatief: b3XZ
o Als significant: “Geheel is meer (synergie) of juist minder (antagonisme) dan som der delen”

, o Interactieterm XZ construeren  SPSS: Transform / Compute Variable  toevoegen als
predictor in model
 Interactie-effect (b3XZ) = de bijdrage van variabele X aan het schattingsresultaat van Y dat afhankelijk is
van de waarde van Z
 Interactie = moderatie: Met b3 toets je of de bijdrage van een variabele altijd hetzelfde is, ongeacht de
waarde op de andere variabele = gemodereerd door andere variabele
 Negatief interactie-effect = het totaal effect is lager dan de som van de hoofdeffecten! (bijv. slechte
smaakcombinaties)
 Positief interactie-effect = het totaal effect is hoger dan de som van de hoofdeffecten! (bijv. goede
smaakcombinaties)
Twee manieren van interpretatie interactie-effecten
 De onderzoeksvraag bepaalt voor welke interpretatie je kiest
1. b3 geeft aan hoe het effect van X op Y verandert met Z → X wordt dan gemodereerd door Z → Y = C +
(b1 + b3Z)X + b2Z
2. b3 geeft aan hoe het effect van Z op Y verandert met X → Z wordt dan gemodereerd door X → Y = C +
b1X + (b2 + b3X)Z

Regressie met interactie-effecten
 Voordeel t.o.v. aparte regressie: Testen of constante en coëfficiënt significant zijn
Uitvoering:
1. Codeer de groep als dummy variabele (0,1)
2. Breidt het regressiemodel uit met de dummy variabele en de interacties van de dummy met de andere
variabelen
Interpretatie coëfficiënten: C + b1X + (B2 + b3X)Z
 Constante: vaste correctiefactor en de constante van de referentiegroep
 b1: verschil in constante voor X=1 met referentiegroep
o Als positief: constante groep 1 hoger dan groep 0
o Als negatief: constante groep 1 lager dan groep 0
 b2: coëfficiënt Z van referentiegroep
 b3: verschil in de coëfficiënt Z van groep 1 t.o.v. groep 0
o Als negatief: afname Y sneller in groep 1
Toetsen op verschillen per groep: Y = C + b1*GROEP + b2*X + b3*GROEP*X
 Y = C + b1*GROEP + (b2+b3*GROEP)*X
o C = constante referentiegroep
o b1 = verschil in de constante van groep=1 met referentiegroep
o b2 = coëfficiënt voor variabele X van referentiegroep
o b3 = verschil in coëfficiënt X van groep=1 met referentiegroep
o constante van groep=1: C+b1
o coëfficiënt van groep=1: b2+b3
 Als coëfficiënt interactie XZ significant (b3)  in de populatie is er een verschil in de
regressiecoëfficiënt van de variabele tussen de groepen  constante verschilt tussen beide groepen

Dummy codering 3 groepen




 De dummy wordt genoemd naar de groep die met 1 is gecodeerd
 Elke dummy schat verschil van een groep met referentiegroep
 Bij N groepen: N-1 dummy’s
o Coëfficiënten voor dummy’s duiden verschillen aan

Effect codering
 Kan handigere interpretatie zijn
 Verschil t.o.v. dummy: referentiecategorie wordt met -1 gecodeerd i.p.v. 0
 Constante = ongewogen gemiddelde

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller noahr. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.26. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.26
  • (0)
  Add to cart