100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
College aantekeningen Computational Analysis of Digital Communication (S_CADC) $3.57   Add to cart

Class notes

College aantekeningen Computational Analysis of Digital Communication (S_CADC)

 23 views  2 purchases
  • Course
  • Institution

Alleollege aantekeningen Computational Analysis of Digital Communication (S_CADC)

Preview 4 out of 50  pages

  • December 20, 2022
  • 50
  • 2022/2023
  • Class notes
  • Philipp k. masur
  • All classes
avatar-seller
Lecture 1: Introduction
Content of this lecture
1. What is computational social science?
2. Computational communication science
3. Formalities of the course
4. Learning ‘R’ for automated text analysis

What is computational social science? … and why should we care?
Example: surprising sources of information




Example: wealth in Rwanda




Example: crime prediction




Computational social science
- Field of Social Science that uses algorithmic tools and large/unstructured data to understand
human and social behavior
- Computational methods as “microscope”: Methods are not the goal, but contribute to
theoretical development and/or data generation
- Complements rather than replaces traditional methodologies
- Includes methods such as, e.g.;
o Advanced data wrangling/data science
o Combining of different data sets
o Automated Text Analysis
o Machine Learning (supervised and unsupervised)
o Actor-based modelling
o Simulations
o …


1

,Typical workflow




Why is this important now?
- In the past, collecting data was expensive (surveys, observations…)
- In the digital age, the behaviors of billions of people are recorded, stored and therefore
analyzable.
- Every time you click on a website, make a call on your mobile phone, or pay for something
with your credit card, a digital record of your behavior is created and stored.
- Because (meta-)data are a byproduct of people’s everyday actions, they are often called
digital traces.
- Large-scale records of persons or business are often called big data.

10 characteristics of big data
Characteristic Description
1 Big The scale or volume of some current datasets is often impressive.
However, big datasets are not an end in themselves, but they can enable
certain kinds of research including the study of rare events, the
estimation of heterogeneity, and the detection of small differences.
2 Always-on Many big data systems are constantly collecting data and thus enable to
study unexpected events and allow for real-time measurement.
3 Nonreactive Participants are generally not aware that their data are being captured
or they have become so accustomed to this data collection that it no
longer changes their behavior.
4 Incomplete Most big data sources are incomplete, in the sense that they don’t have
the information that you will want for your research. This is a common
feature of data that were created for purposes other than research.
5 Inaccessible Data held by companies and governments are difficult for researchers to
access.
6 Nonrepresentative Most big datasets are nonetheless not representative of certain
populations. Out-of-sample generalizations are hence difficult or
impossible.
7 Drifting Many big data systems are changing constantly, thus making it difficult
to study long-term trends.
8 Algorithmically Behavior in big data systems is not natural; it is driven by the
confounded engineering goals of the systems.
9 Dirty Big data often includes as lot of noise (e.g., junk, spam, spurious data
points...)
10 Sensitive Some of the information that companies and governments have is
sensitive.



2

,Example data




Typical computational research strategies
1. Counting things
o In the age of big data, researcher can “count” more than ever
▪ How often do people use their smartphone per day?
▪ About which topics do news websites write most often?
2. Forecasting and nowcasting
o Big data allow for more accurate predictions both in the present and in the future
▪ Investigate when people disclose themselves in computer-mediated
communication
▪ Crime prediction
3. Approximating experiments
o Computational methods provide opportunities to conduct “natural experiments”
▪ Compare smartphone log data of people who use their smartphone naturally
vs. those who abstain from certain apps (e.g., social media apps)
▪ Investigate the potential of nudges to make users select certain news

Advantages and disadvantages
- Advantages of Computational Methods
o Actual behavior vs. self-report
o Social context vs. lab setting
o Small N to large N
- Disadvantage of Computational Methods
o Techniques often complicated
o Data often proprietary
o Samples often biased
o Insufficient metadata

Computational Communication Science: why computational methods are important for (future)
communication research…

Definition
“Computational Communication Science (CCS) is the label applied to the emerging subfield that
investigates the use of computational algorithms to gather and analyze big and often semi- or
unstructured data sets to develop and test communication science theories” (Van Atteveldt & Peng,
2018).




3

, Promises
The recent acceleration in the use of computational methods for communication science is primarily
fueled by the confluence of at least three developments:
- Vast amounts of digitally available data, ranging from social media messages and other
digital traces to web archives and newly digitized newspaper and other historical archives
- Improved tools to analyze this data, including network analysis methods and automatic text
analysis methods such as supervised text classification, topic modeling, word embeddings,
and syntactic methods.
- Powerful and cheap processing power, and easy to use competing infrastructure for
processing these data, including scientific and commercial cloud computing, sharing
platforms such as Github and Dataverse, and crowd coding platforms such as Amazon Turk
and Crowdflower

Example 1: simulating search queries




Example 2: analyze news coverage




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller VUstudent3. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.57. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78252 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.57  2x  sold
  • (0)
  Add to cart